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14.  ABSTRACT 

Advanced breast cancers that initially respond well to tamoxifen treatment eventually become refractory 
to this compound. Several mechanisms of acquired resistance have been hypothesized, including 
crosstalk between ER and growth factor receptor tyrosine kinase pathway. The cumulative data from 
clinical studies show that overexpression of HER-2 and/or EGFR, and high levels of phosphorylated Akt 
or ERK, contribute to tamoxifen resistance in some patients. HER-2, EGFR, Akt and ERK are all kinases 
and components of signaling pathways critical to cell growth and survival, highlighting the need for global 
phosphoproteome analysis. In this report I describe a method for comparison of global phosphoprotein 
profiles involving stable isotope labeling, a phosphoprotein affinity step, 1-D SDS-PAGE and LC-MS/MS. I 
applied this method, differential phosphoprotein profiling to compare phosphoprotein profiles in MCF-7 
(tamoxifen sensitive) and MCF-7/HER2-18 (tamoxifen resistant) cells and to examine their regulation by 
tamoxifen. I found that FADD and other proteins involved in apoptosis were identified in the 
phosphoenriched fraction of MCF-7 cells but not MCF-7/HER2-18 cells. I also found several proteins 
regulated by tamoxifen. For example, phosphorylation of XRCC1 on XXX is decreased in MCF-7/HER2-
18 cells but not in MCF-7 cells. Both FADD and XRCC1 have previously been described as being 
involved in tamoxifen resistance showing that phosphoprotein profiling is a feasible method for identifying 
proteins relevant to tamoxifen resistance. 
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     Introduction 
 Breast cancer remains the most common malignancy affecting women in the 
United States. About 80% of breast cancers are estrogen-receptor-alpha-positive 
(ERα+), some of which respond to estrogen hormone therapy. ERα is a ligand-activated 
transcription factor that plays a critical role in the etiology of breast cancer [1-3]. 
Selective estrogen receptor modulators (SERMs) have variable agonistic and/or 
antagonistic activities, depending on the type of ER (α versus β), tissue context, and 
interactions with different proteins such as transcriptional co-activator or co-repressors 
[4]. The first SERM, tamoxifen, revolutionized breast cancer treatment when it came into 
use some three decades ago. In ERα breast cancer cells, tamoxifen blocks cancer 
growth by competing for binding to ER and cuts recurrence risk in half [5] [6]. More 
recently, tamoxifen has been shown to prevent breast cancer in high-risk women [7] [8]. 
Even in patients with ERα-positive breast cancer, only 40–50% of patients benefit from 
tamoxifen treatment, suggesting that a substantial fraction of ER-positive cancers are 
resistant to this drug. Additionally, advanced breast cancers that initially respond well to 
tamoxifen eventually become refractory to this compound. In some cases, tamoxifen 
can even act as a growth stimulatory signal. Several mechanisms of resistance have 
been hypothesized, including crosstalk between ER and other proliferative signals, such 
as growth factor receptor tyrosine kinase pathways [9-12]. The cumulative data from 
clinical studies show that overexpression of HER-2 and/or EGFR, and high levels of 
phosphorylated Akt or ERK, contribute to tamoxifen resistance in some patients [13-16]. 
HER-2, EGFR, Akt and ERK are all kinases and components of signaling pathways 
critical to cell growth and survival, highlighting the need for global phosphoproteome 
analysis.   

Although many biomarkers for breast cancer prognosis and therapy initially 
appeared attractive, over the years most of them have failed to become clinically useful, 
with the exception of hormone receptors (ER and PR) and the HER-2 tyrosine kinase 
receptor [17, 18]. Although ER status provides prognostic information, the major clinical 
value is to assess the likelihood that a patient will respond to endocrine therapy [2, 19]. 
HER2 is overexpressed in 25 to 30 percent of breast cancers, increasing the 
aggressiveness of the tumor [20]. The drug Trastuzumab (Herceptin) is a monoclonal 
antibody directed against the HER-2 and has a survival benefit when combined with 
chemotherapy in patients with metastatic breast cancer that overexpress HER-2 [21]. 
However, tumors that overexpress HER2 tend to be ERα negative and thus represent a 
separate treatment group. Current prognostic classifications are thus not enough to 
represent the broad clinical heterogeneity of breast cancer, making it difficult to target 
therapeutic strategies to each patient. A major component of prognosis for patients 
undergoing endocrine therapy is the acquired resistance to tamoxifen. Finding 
biomarkers for tamoxifen resistance and/or drugs that could help overcome the 
resistance is a very important topic. 

New reporters that could be used in combination with existing markers for 
screening of breast cancer cells for treatment decisions or to predict therapy outcome 
are still needed. A major component of prognosis for patients undergoing endocrine 
therapy is the acquired resistance to tamoxifen. Finding reporters for tamoxifen 
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resistance and/or drugs that could help overcome the resistance is a very important 
topic.  
 Thanks to recent advances in technology and the ability to analyze enormous 
amounts of data, proteomics is poised to have a significant effect on cancer research. 
Although gene expression patterns of cancerous cells have been extensively studied, 
there is a dearth of information on protein expression and protein modification patterns. 
This is important because gene expression alone cannot determine the activation state 
of cellular proliferation signaling pathways. Aberrations in the regulation of these 
pathways are a key to the development and progression of cancers. The activity of 
signaling proteins depends on their interactions with other proteins and modifications 
(phosphorylations) they undergo over time, areas that proteomics is able to address [22, 
23].  

Before starting this project, I had developed and published a method for 
enrichment of phosphoproteins [24]. The methodology involves a phosphoprotein 
affinity step, 1-dimensional SDS-PAGE and ESI LC-MS/MS and is termed PA-GeLC-
MS/MS. By combining the phosphoprotein enrichment method with stable isotope 
labeling relative quantitation of phosphoprotein profiles can be obtained. I refer to this 
combined method as differential phosphoprotein profiling. The overall goal of this 
project is obtain global phosphoprotein profiles of tamoxifen response and to compare 
responses in tamoxifen sensitive and resistant cell lines to identify markers of tamoxifen 
response. In this final report I describe phosphoprotein profiling of MCF-7 (tamoxifen 
sensitive) and MCF-7/HER2-18 (tamoxifen resistant) cells and report several proteins 
that respond differently to tamoxifen treatment in these two cell lines.  
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Figure 2. Phosphoprotein enrichment 
of proteins from MCF-7/HER2-18 cells. 
MCF-7/HER2-18 cells were split into two 
equal samples and grown in either heavy 
or light SILAC media. The heavy cells 
were then treated with 10 nM Tamoxifen 
and the light cells with ethanol as control, 
for a total of 30 minutes. The samples 
were lysed and mixed at 1:1. 
Phosphoproteins were isolated using a 
phosphoaffinity column (Pro-Q Diamond, 
Invitrogen/Molecular Probes). Lysate (L), 
flowthough (FL) and Eluate (E) from the 
phosphoaffinity column were subjected to 
SDS-PAGE and the gel stained with 
Imperial Coomassie to visualize proteins 
and Pro-Q Diamond fluorescent stain to 
visualize phosphoproteins. 
Representative figure for MCF-7/HER2-
18 and MCF-7 cells. 

Body 
 

PHOSPHOPROTEIN ENRICHMENT FROM CONTROL AND TAMOXIFEN TREATED MCF-7 AND MCF-
7/HER2-18 CELLS 
 Differential phosphoprotein profiling was performed on two cell lines. First, the 
MCF-7 breast cancer cell line is estrogen receptor positive, responds to estrogen 
stimulation and is sensitive to tamoxifen. Several cell lines have been generated that 
are resistant to tamoxifen treatment. As mentioned previously, overexpression of HER2 
has been described in patients with acquired tamoxifen resistance [29]. The tamoxifen 
resistant cell line used in these experiments, MCF-7/HER2-18, was generated by 
overexpressing full-length HER2 kinase in MCF-7 cells. The authors tested for response 
to tamoxifen by implanting MCF-7/HER2-18 or MCF-7 control cells into nude mice. Both 
cells only produced tumors when stimulated with estrogen, but MCF-7/HER2-18 grew 
much more rapidly. Tamoxifen inhibited growth in 
the MCF-7-derived tumors but not in the MCF-
7/HER2-18 derived tumors [20].   

Phosphoprotein enrichment experiments 
were performed on both MCF-7 (tamoxifen 
sensitive) cells and MCF-7/HER2-18 (tamoxifen 
resistant) cells (Figure 1, see next page). The cells 
were SILAC labeled with DMEM-Flex media 
(Invitrogen) without phenol red and contained high 
glucose (4500 mg/ml), 1mM sodium pyruvate, 10% 
heat-inactivated dialyzed fetal bovine serum, 1% 
penicillin/streptomycin and 0.3 mg/ml L-glutamine. 
Briefly, two equal amounts of cells were seeded 
onto plates, one was grown in “light” (L-lysine and 
L-Arginine) and the other in “heavy” (13C6 L-lysine 
and 13C6

15N4 L-Arginine) media for >10 doublings.  
 Prior to treatment cells were serum starved 
for 2 hours. The cells were then treated for 30 
minutes with 10 nM 4-hydroxy-tamoxifen (Sigma) 
or ethanol as control. Whole cell lysates were 
prepared from 7 x 107 cells in 1.5 ml of lysis buffer 
(ProQ lysis buffer with 1 µM sodium fluoride, 1 µM 
okadaic acid and 0.1 µM sodium orthovanadate). 
The supernatant was collected, and protein yields 
were determined by Bradford analysis using Bio-
Rad protein assay reagent. About 5 mg of lysate 
was obtained from each sample. A sample of the 
lysate was stored for follow-up analysis using 
Western blots. 2.5 mg of lysate from light cells and 
2.5 mg of lysate from heavy cells was mixed and 
the combined lysate was loaded onto pre-
equilibrated Pro-Q Diamond resin, the column 
washed and phosphoproteins eluted. The lysate, flow-through and eluate were 
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concentrated in 10 kDa MWCO Vivaspin concentrators at 4 °C and washed with 50 mM 
Tris, pH 7.5. The samples were mixed with Laemmli buffer and incubated at 95°C for 5 
min before loading on NuPAGE 2-12% gradient gels. The gel was stained for 
phosphoproteins using Pro-Q Diamond stain and subsequently for proteins with Imperial 
Coomassie stain. Coomassie stained protein was visible in all three fractions including 
the flow through (Figure 2, see previous page). The dark staining in the eluate fraction 

 
Figure 1. Scheme for differential phosphoprotein profiling. Two cell lines were used for 
analysis, MCF-7 and MCF-7/HER2-18. (1) One sample is grown in media with stable isotope labeled 
arginine (Arg) and lysine (Lys) (heavy sample) and another grown in regular media (light sample). 
Heavy sample is treated with 10 nM Tamoxifen for 30 minutes, the light sample is untreated control. 
Samples are then combined, subjected to (2) phosphoenrichment (Pro-Q Diamond resin, 
Invitrogen/Molecular Probes), separation by (3) SDS-PAGE (cut into 18 sections). The samples are 
then (4) digested and peptides extracted and subjected to (5) reversed phase nanoLC-MS/MS. 
Peptide and protein identification from (6) MS/MS spectra using Mascot, X!Tandem and compiled in 
Scaffold. Relative abundance calculated from MS spectra (7) using XPRESS in CPAS. Experiment 
was repeated identically except tamoxifen treatment was performed on the light sample (gel B in 
Table 1). Peptides whose abundance ratios differ between MCF-7 and MCF-7/HER2-18, 
represented by blue peptide in shadowed box, are the ones of interest.  
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and the scarcity of phosphoproteins in the flowthrough fraction shows that the Pro-Q 
Diamond resin selectively binds phosphoproteins. 
 
MASS SPECTROMETRY OF THE ENRICHED PHOSPHOPROTEINS 

Proteins were extracted for mass spectrometry analysis from the ProQ elution gel 
lane of the SDS-PAGE gel (Figure 2, elution lane). Briefly, the molecular weight region 
above 10 kD was divided into 20 sections, about 0.5 cm each. The top two and second 
two sections were combined, giving a total of 18 sections. Each section was cut into 
small pieces, each ~1 mm3. Sections were washed in water and completely destained 
using 100 mM ammonium bicarbonate in 50% acetonitrile. A reduction step was 
performed by addition of 100 µl of 50 mM ammonium bicarbonate pH 8.9 and 10ul of 10 
µM TCEP and allowed to reduce in 37 ºC for 30 min. The proteins were alkylated by 
adding 100 µl of 50 mM iodoacetamide and allowed to react in the dark for 40 min. Gel 
sections were washed in water, initially dried with acetonitrile followed by a SpeedVac 
step of 30 min. Digestion was carried out using sequencing grade modified trypsin (40 
ng/ml, Promega) in 50 mM ammonium bicarbonate. Sufficient trypsin solution was 
added to swell the gel pieces, which were kept in 4º C for 45 min and then incubated at 
37º C overnight. Sections containing proteins larger than 150 kD were pre-digested with 
Lys-C (0.25 mg/ml, Princeton Separations) in 6-8 M Urea overnight at 25 ºC, diluted to 
final concentration of less than 2 M Urea then digested with trypsin as described above. 
Peptides were extracted from the gel pieces with 5% formic acid.  

All mass spectrometry was performed in the Mayo Proteomics Research Center, 
on Thermo LTQ-Orbitrap Hybrid FT Mass Spectrometers. The peptide samples were 
loaded to a 0.25 µl C8 trapping cartridge OptiPak custom-packed with Michrom 
BioResources Magic C8, 5 µm, 200A, washed, then switched in-line with a 20 cm by 75 
um C18 'packed spray tip' nano column packed with Magic C18AQ, 5 µm, 200A, for a 2-
step gradient, where mobile phase A is water/acetonitrile/formic acid 98/2/0.2 and 
mobile phase B is acetonitrile/isopropanol/water/formic acid 80/10/10/0.2. Using a flow 
rate of 350 nl/min, a 90 min, 2-step LC gradient was run from 5% B to 50% B in 60 min, 
followed by 50%-95% B over the next 10 min, hold 10 min at 95% B, back to starting  
conditions and re-equilibrated. The samples were analyzed via electrospray tandem 
mass spectrometry (LC-MS/MS) on the LTQ-Orbitrap using a 60,000 RP Orbi survey 
scan, m/z 375-1950, with lock masses, followed by 5 LTQ CAD scans with isolation 
width of 1.6 Da on doubly and triply charged-only precursors between 375 Da and 1500 
Da. Ions selected for MS/MS were placed on an exclusion list for 60 s using low mass 
exclusion of 1.0 Da, high mass exclusion of 1.6 Da. 

The mass spectrometry data were converted to .mgf files via .mzXML 
intermediates and searched using Mascot using the SILAC (MD) quantitation 
parameter. A fragment ion mass tolerance of 50 ppm and a parent ion tolerance of 0.6 
Da were specified. Oxidation of methionine, phosphorylation (S, T, Y) and 
carbamidomethyl (C) were specified as variable modifications. Mascot results were 
loaded into Scaffold (Proteome Software), which uses Peptide and Protein prophet to 
calculate probabilities. Scaffold also conducted an X!Tandem search using the 
parameters used for Mascot.  

Comparative Proteomics Analysis System(CPAS) is a open-source analytic 
system based on the modules developed in the Trans Proteomic Pipeline from Institute 
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of Systems Biology (Seattle) [30]. CPAS was used to perform quantitation on the data 
from mzXML files. The analysis pipeline involved performing X!Tandem searches (using 
the parameters described above), converting the results to .pepXML format, processing 
by Peptide Prophet for statistical evaluation of peptide identifications and Xpress 
software for relative peptide quantification. The peptide results from all 18 sections were 
exported and combined into one excel file. Proteins were compiled and protein 
averages calculated using a 
Perl script provided by the 
Hanash lab at Fred Hutch 
(Seattle). Experiments were 
performed in duplicate, gel A 
where heavy cells treated with 
tamoxifen and light were 
untreated and gel B where 
light cells were treated with 
tamoxifen and heavy were 
untreated (Table 1).  

 
Table 1. Overview of mass 
spectrometry experiments.  
 
SILAC labeled 

Cells Name Tamoxifen 
treatment 

Control  # Sections Status 

MCF-7 GelA  Light Heavy 18 Completed 
MCF-7 GelB  Heavy Light 18 Completed 
MCF-7 
/HER2-18 

GelA 
 

Light Heavy 18 Completed 

MCF-7 
/HER2-18 

GelB  
 

Light Heavy 18 Completed 

 
 
 
RESULTS  
 
PHOSPHOPROTEIN PROFILING OF MCF-7 CELLS WITH AND WITHOUT TAMOXIFEN TREATMENT 
 Using these methods over 1400 proteins were identified from the Pro-Q Diamond 
enriched fraction of MCF-7 cells (Figures 1 and 2). Specifically, a protein probability of 
>99%, peptide probability of >95% and a minimum of 2 unique peptides per protein 
identification were required in Scaffold giving a 5.4% false discovery rate (FDR) for 

 
Figure 3. Venn Diagram shows overlap between 
proteins identified from differential 
phosphoprotein profiling. The Venn diagram shows 
two replicates from the MCF-7 cell line (MCF-7 gel A 
and B) and two replicates from the MCF-7/HER2-18 
cell line (HER2 gel A and B). The diagram was made 
in   
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peptides and 0.1% FDR for proteins. Experiments were performed in duplicate: In 
experiment A heavy cells were treated with tamoxifen and light cells were untreated and 
experiment B light cells were treated with tamoxifen and heavy were untreated (Table 
1). The two replicates had 1080 identical proteins from a total of 1483 or 73% protein 
overlap (Figure 3). When similar proteins are included, as measured by GeneGo 
software, the number goes up to 83%. Only identical proteins identified in both samples 
were used for further analysis. Quantitative analysis will reveal which proteins are 
affected by tamoxifen treatment (see below). 
 
THE EFFECT OF TAMOXIFEN ON THE PHOSPHOPROTEOME OF MCF-7 CELLS 
 Quantitation was performed as described above and only protein ratios with less 
than 10% standard deviation between gelA and gelB (Table 1) were averaged and 
included in further analysis. The vast majority of proteins did not change substantially in 
abundance. About 20 proteins were identified that decreased >25% and about 30 
proteins that increased >25% in the tamoxifen treated sample. Gene ontology analysis 
of these proteins reveals that they are involved in several important processes such as 
protein transport, DNA repair, signal transduction and protein biosynthesis.  
 
PHOSPHOPROTEIN PROFILING OF MCF-7/HER2-18 CELLS WITH AND WITHOUT TAMOXIFEN 
TREATMENT   
 Phosphoprotein profiling on MCF-7/HER2-18 tamoxifen resistant cells resulted in 
identification of over 1500 proteins (protein probability >99%, peptide probability >95%, 
requiring a minimum of 2 unique peptides per protein identification). Among the proteins 
identified were HER2 kinase, as expected since it is over-expressed in the cell line. 
HER-2 protein coverage was 36%. Experiments were performed in duplicate: In 
experiment A heavy cells were treated with tamoxifen and light cells were untreated and 
experiment B light cells were treated with tamoxifen and heavy were untreated (Table 
1). The two replicates had 1115 identical proteins from a total of 1547 or 72% protein 
overlap (Figure 3). Only identical proteins identified in both samples were used for 
further analysis. Quantitative analysis will reveal which proteins are affected by 
tamoxifen treatment (see below). 
 
THE EFFECT OF TAMOXIFEN ON THE PHOSPHOPROTEOME OF MCF-7/HER2-18 CELLS 

Quantitation revealed that the vast majority of proteins did not change 
substantially in abundance. 5 proteins were identified that decreased >25% in the 
tamoxifen treated sample and 8 proteins that increased >25% in the tamoxifen treated 
sample. Gene ontology analysis of these proteins reveals that the proteins are involved 
in several important processes such as DNA repair, protein transport and signal 
transduction.  

 
COMPARING THE IDENTIFIED PROTEINS AND PHOSPHORYLATION SITES TO DATABASES OF 
PHOSPHORYLATION 
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 Examination of proteins identified revealed that several phosphorylation sites 
were identified (Figure 4). The majority of phosphorylation sites (with the exception of 
MCF-7/HER2-18) are from similar or common proteins. Quantitative analysis will reveal 
which phosphorylation sites are affected by tamoxifen treatment (see below). All 
peptides contained phosphoserines and/or phosphothreonines. No phosphotyrosine 
containing peptides were detected. PhosphoELM is a database of phosphopeptides 
identified by mass spectrometry (Diella et al, 2008). The database contains 4078 protein 
sequences containing 16470 total phosphorylation sites (12025 (73%) phosphoserine, 
2362 (14%) phosphothreonine and 2083 (13%) phosphotyrosine).  
 Overall, 38% of identified proteins, with identified phosphosites and without, 
identified from the MCF-7 cell line and 40% of proteins identified from MCF-7/HER2-18 
were found in phosphoELM. As expected, the phosphorylation sites included all three 
types of phosphorylated amino acids (serine, threonine and tyrosine). The frequency of 
phosphoserine in the Pro-Q Diamond enriched proteins, >70%, corresponds nicely with 
the frequency of phosphoserine in the PhosphoELM database. 10% of the Pro-Q 
Diamond enriched proteins contain only phosphotyrosine sites in the PhosphoELM 
database. Again, the frequency correlates well with PhosphoELM database as a whole 
and indicates that the Pro-Q Diamond resin is not biased towards any of the 
phosphorylated residues.  

 
COMPARISON OF IDENTIFIED PROTEINS IN MCF-7 AND MCF-7/HER2-18 CELLS 
 Proteins identified from all 4 experiments: MCF-7 cells (two experimental 
replicates A and B) and MCF-7/HER2-18 cells (two experimental replicates A and B) 
are compared in a Venn diagram in Figure 3. A significant overlap exists between the 
two cell lines, as can be expected, since the MCF-7/HER2-18 cell line was generated by 
overexpressing HER-2 in an MCF-7 cell line. Interestingly, several proteins were 
identified in only one cell line. Specifically, 128 proteins were found in both MCF-7 
experiments but in neither HER-2 experiments and 118 proteins were found in both 
HER-2 experiments but in neither MCF-7 experiment. Analysis of these proteins using 
GeneGo revealed an enrichment of apoptotic molecules in the MCF-7/HER2-18 cell line  
This is of great interest to me and I will follow up on this interesting observation. I have 

Figure 4. A comparison of phosphoeptides identified using differential 
phosphoprotein profiling. Phosphopeptides from MCF-7 Gel A (orange), MCF-7 Gel B 
(blue) , MCF-7/HER2-18 Gel A (red) and MCF-7/HER2-18 Gel B (green) were compared at 
the protein level using GeneGo software.  
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chosen FADD, an apoptotic adaptor molecule that recruits activated Caspase 8 or 10 to 
activated Fas and TNFR-1 (Tumor Necrosis Factor) receptors to follow up on. Studies 
have shown that inhibiting or reducing phosphorylation of Ser194 in the FADD protein in 
MCF-7 cells results in decreased sensitivity to tamoxifen treatment [37].  

FADD was detected only in the phosphoenriched fraction from the MCF-7/HER2-
18 cell line. However, the lack of detection in any mass spectrometry experiment does 
not necessarily mean that the protein is not there. Thus we analyzed FADD levels using 
RT-PCR and Western blots.  The RT-PCR showed no chance in mRNA. Western blots 
showed similar amounts of FADD present in both MCF-7 and MCF-7/HER2-18 cell 
extracts (Figure 6). Thus, although FADD was not detected in the phosphoenriched 
fraction of MCF-7/HER2-18 it is not due to the protein being absent. Thus it is likely that 
FADD is phosphorylated in MCF-7/HER2-18 cells and not in MCF-7 cells. I was not able 
to identify the phosphorylation site by mass spectrometry or detect signal using anti-
FADD phosphoSer194  antibody. Previously, it has been shown that phosphorylation of 
FADD on Serine194 is statistically different between breast tumor epithelial cells and 
matched undissected breast tissue [36]. I propose that phosphorylation of FADD on 
Serine 194 could be a marker for tamoxifen treatment efficacy.  
 
THE EFFECT OF TAMOXIFEN ON THE PHOSPHOPROTEOME OF MCF-7 AND MCF-7/HER2-18 
CELLS 

I have compared the results from MCF-7 to MCF-7/HER2-18 phosphoprotein 
profiling of tamoxifen response and identified 26 proteins that respond to tamoxifen 
differently. All but three of these proteins are known to be phosphorylated and at least 

one of the three proteins is 
known to bind to a 
phosphoprotein and could thus 
have been purified on the Pro-
Q Diamond resin as a 
phosphoprotein complex.  
Of these proteins, XRCC1 is a 
promising marker. A 
relationship has been shown 
between XRCC1 
polymorphisms and breast 
cancer risk that reported an 
inverse association between 
the Trp194 carriers and breast 
cancer risk (Patel et al, 2005). 
In particular, XRCC1 
Arg194Trp and Arg399Gln 
polymorphisms have been 
shown to affect XRCC1 
protein-product expression and 
to alter BER capacity.  

I show in this report that 
two known phosphorylation 

 
Figure 5. Tamoxifen treatment results in decreased 
phosphorylation of XRCC1 on Ser447/Thr453 in 
MCF-7/HER2-18 cells. Black bars show the duplicate 
MCF-7 experiments with ratios around 1:1 with and 
without tamoxifen treatment. Grey bars show the 
duplicate MCF-7/HER2-18 experiments showing a 20% 
decrease in XRCC1 levels after tamoxifen treatment. In 
particular, the phosphopeptide from XRCC1 containing 
pSer447/pThr453 decreased 70% after tamoxifen 
treatment (red bars).  
 



Page 13 
 

sites in XRCC1, Ser447 and Thr453, are detected in the tamoxifen resistant cell line 
and the levels of these significantly decreased after tamoxifen treatment (Figure 5). No 
antibody is available for this phosphorylation site but we did perform RT-PCR and saw a 

slight decrease in 
XRCC1 levels in 
response to tamoxifen in 
MCF-7/HER2-18 cells 
but not enough to 
explain the decrease in 
phosphorylation (Figure 
6). How phosphorylation 
on Ser447 and Thr453 
affects the function of 
XRCC1 is not clear. The 
kinase that 
phosphorylates Ser447 
and Thr453 in XRCC1 is 
not known. Taken 
together, several 

potential markers for tamoxifen response have been identified from a single proteomic 
screen, showing the strength of this approach. 

 
 
Methods for RT-PCR and Western blots:  
RT-PCR 
Cells were seeded onto 6-well plates, treated with serum stripped media for 24 hours 
and then with the 10nM  Estradiol or 10 nM Tamoxifen or equal volume ethanol as 
control for the indicated times. RNA was extracted using 1 ml ice-cold Trizol (Invitrogen) 
for 10 minutes and frozen at -80°C until ready for analysis. 1.2 µg total RNA was treated 
with Amplification Grade DNAse I (Invitrogen). cDNA was synthesized from one-half of 
the RNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 
qPCR was performed in a 384-well plate on an ABI 7900HT (Applied Biosystems) using 
Power SYBR Green PCR Master Mix (Applied Biosystems) in a 5 µl reaction volume 
containing 2 µl of 1:40 diluted cDNA and 0.5 µl of 100 µM primers. PCR primers, 
designed using Primer Blast (www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi), were 
as follows: TNF-f: GCC AGA GGG CTG ATT AGA GA TNF-r: TCA GCC TCT TCT CCT 
TCC TG, IKBA-f: GATCCGCCAGGTGAAGGG, IKBA-R: GCAATTTCTGGCTGGTTGG, 
FOS, CHK2, RIPK1, PARP1-f: CAA CTT TGC TGG GAT CCT GT, PARP1-r: GGT CCC 
AAG AGG AAC GTC TA, EGR1-f: GCAAGTACCCCAACCGGC, EGR1-r: 
GCAAACTTCCTCCCACAAATGT, GAPDH-f: TGCACCACCAACTGCTTAGC, GAPDH-
r: GGCATGGACTGTGGTCATGAG. QuantiTect primers for GAPDH, FADD, BET1, 
XRCC1, DTYMK, API5, PBK, PAK1, NUP62 and GGA1 were obtained from Qiagen: 
Hs_GAPDH_2_SG, Hs_FADD_1_SG, Hs_BET1_1_SG, Hs_XRCC1_1_SG, 
Hs_DTYMK_2_SG, Hs_API5_1_SG, Hs_PBK_1_SG, Hs_PAK1_1_SG, 
Hs_NUP62_2_SG, Hs_GGA1_1_SG. Fold-change calculations were performed using 
the comparative Ct method, using GAPDH as the endogenous control. 

 
Figure 6. RT-PCR results showing no significant change in 
mRNA levels after tamoxifen treatment. MCF-7 cells (black 
bars), MCF-7/HER2-18 cells (grey bars).  
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 Western Blots  
The cells were seeded onto 10 cm plates, treated with stripped media for >24 hours, 
then treated with 10 nM E2, TAM or ethanol as a control and incubated for the indicated 
times. Cells were then rinsed with PBS, scraped off of plate, spun down and the pellet 
frozen at -80°C until use. The pellet was lysed in ProQ lysis buffer with HALT 
phosphatase inhibitors and HALT protease inhibitors and mixed with 4X Laeemli buffer, 
boiled for 5 min and spun down. 50 µg of protein lysate was separated by SDS-PAGE 
on 4-12% NuPAGE gradient gels. The proteins were transferred to nitrocellulose 
membrane and blocked in 5% milk in TBST for 1 hour. The membrane was incubated 
with antibodies at 1:1000 dilutions at 4°C overnight. Primary antibodies were the 
following: αFADD, αFADD(pSer194), from Cell Signaling. The membrane was washed 
in TBST, and incubated with 1:5000 diluted secondary antibody (αRabbit from GE 
Healthcare) for 1 hour before addition of ECL reagent and developing film.  

18O labeled 
MCF-7 
/HER2-18 

GelA 
 

Light Heavy 18 Completed 

MCF-7 
/HER2-18 

GelB  
 

Heavy Light 18 In progress 

 
To identify the effects of longer tamoxifen treatment I performed another 

proteomic experiment in MCF-7/HER-2 cells (listed as 18O labeled in Table 1). Instead 
of using SILAC labeling, I tested an alternative, termed 18O labeling. The benefits of 18O 
labeling include removing the requirement for growth in labeled media. This will allow 
me to label patient samples in the future. Along with Don Wolfgeher in the lab, I 
optimized the 18O labeling protocol. We also had to generate in-house software for 18O 
quantiation which was done by Jonathon Goya, in the lab.  

Briefly, MCF-7/HER2-18 cells were maintained in DMEM media without phenol 
red and containing high glucose (4500 mg/ml), 1mM sodium pyruvate, 10% fetal bovine 
serum, 1% penicillin/streptomycin and 0.3 mg/ml L-glutamine and 0.1 mg/ml G418. Two 
equal amounts of cells were seeded onto plates and incubated in the same media as 
above except media was used that contained charcoal stripped serum. After 24 hours, 
the cells were then treated for 24 hours with 10 nM 4-hydroxy-tamoxifen (Sigma) or 
ethanol as control. Whole cell lysates, Pro-Q phosphoprotein enrichment, SDS-PAGE, 
trypsin digestion from gel were all performed as described above. The peptide samples 
were then spun down to dryness and then reconstituted in either 30 µL regular water or 
H2

18O (99%, Cambridge Isotope labs) and dry magnetic trypsin beads added to the 
solution for 24 hours at 37C. The sample was then spun down to dryness again. Right 
before mass spectrometry analysis the sample was resuspended in 30 µL 
water/AcN/formic acid and mixed at 1:1 ratio. Data analysis was performed as 
described above except the quantitation was performed with in-house software. The 
replicate experiment is awaiting mass spectrometry analysis, I expect the data next 
week. Since my criteria for accepting protein identifications is identification in two 
replicate samples, I cannot report the results for this analysis in this report.  

 
COMPUTATIONAL SOLUTIONS TO COMPLEX SIGNALING ANALYSIS 
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One major problem I have encountered during this work is the low quality of proteomic 
software. Analysis takes very long and often includes manual validation of spectra and 
quantitation levels. To circumvent this problem I formed a collaboration with a computer 
scientist in the Computation Institute here at the University of Chicago, Sam 
Volchenboum. Our software takes advantage of the fact that once samples have been 
labeled with stable isotope and is mixed with an unlabeled sample, each peptide 
appears as a doublet (light, unlabeled and heavy, stable isotope labeled). This 
distinguishes peptides from background peaks and aids in the identification of peptides. 
In addition, since the isotope is added to the C-terminal of the peptide (in SILAC and 180 
labeling), C-terminal fragment ions (y-ions) are shifted between the two fragmentation 
spectra (light and heavy forms) from non-labeled and non-shifted N-terminal fragment 
ions (b-ions). Utilizing this information we developed a fast and reliable method for 
automated validation of Mascot search results from high accuracy mass spectrometry 
data. We can identify isotopic pairs within searched Mascot data (DAT file), and these 
pairs represent the highest confidence peptide matches. Our software, termed 
Validator, demonstrated a false discovery rate of only 2% while retaining most high-
Mascot scoring peptides and eliminating most low-scoring ones. We also demonstrated 
that our software identifies peptide pairs based only on their difference in precursor 
mass owing to the presence of the stable isotope label using no Mascot-specific 
information. We were able to corroborate 81% of identified peptide pairs using 
conventional database search engines and published the paper in Journal of Molecular 
and Cellular Proteomics [38] (the paper in its entirety is found in the appendix). We are 
currently working on a second publication; describing a program we have termed 
Identifier. Identifier takes the proteome of an organism, for example yeast, and 
generates in silico digested peptides listing the peptide sequence, mass and the identity 
and mass of b- and y-ions. Thus the workflow will involve using Validator to identify 
peptide pairs from the raw data and comparing the mass and fragmentation patterns of 
peptides to the in silico digested proteome. This allows for very rapid analysis of mass 
spectrometry data and represents a novel method of protein identification that can be 
used instead of or in addition to conventional database search engine methods. Finally, 
Jonathan Goya in our lab has written a quantitation module that will be added to our 
software and allow for complete analysis of proteomic samples in a rapid, reliable 
manner. The quantitation module will be published as a separate paper and the 
manuscript is in preparation.  
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Key Research Accomplishments 

 
• I have performed phosphoprotein enrichment from tamoxifen treated and control 

untreated samples from tamoxifen sensitive (MCF-7) and tamoxifen resistant 
(MCF-7/HER2-18) cell lines. The experiment was performed twice for each cell 
line.  

• Each experiment identified over 1400 proteins and dozens of phosphorylation 
sites were identified.  

• I have compared the results from MCF-7 to MCF-7/HER2-18 phosphoprotein 
profiling of tamoxifen response. In particular, XRCC1 is a promising marker for 
tamoxifen resistance. I show in this report that two known phosphorylation sites 
in XRCC1, Ser447 and Thr453, are detected in the tamoxifen resistant cell line 
and the levels of these significantly decreased after tamoxifen treatment 

• In addition, examining proteins only found in the phosphoenriched section of one 
of the cell lines revealed an abundance of proteins involved in apoptosis. One of 
these proteins, FADD, has previously been shown to result in resistance to 
tamoxifen when phosphorylation on Ser194 is blocked. We found that FADD was 
present in phosphoenriched fraction from MCF-7 cells but was not detected in 
MCF-7/HER2-18 cells. This is not due to changes in proteins amounts since the 
RT-PCR showed no chance in mRNA and Western blots showed similar 
amounts of FADD present in both MCF-7 and MCF-7/HER2-18 cell extracts.  

• In collaboration with Sam Volchenboum, Instructor in Pediatrics and the 
Computational Institute at the University of Chicago, I developed a fast and 
reliable method for automated validation of Mascot search results from high 
accuracy mass spectrometry data which was published the paper in Journal of 
Molecular and Cellular Proteomics. 

• A quantitation module for stable isotope labeled proteomic data analysis was 
written in collaboration with Jonathan Goya in lab.  
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Reportable Outcomes 
A. Talks and poster presentations 

1. Cancer Biology Training Consortium, Chairs and Program Directors Retreat 
and Annual Meeting (CABTRAC) in Basin Harbor Resort, Vermont, September 
30th-October 2 2007. Presented poster entitled: “Phosphoprotein profiling for 
quantitative analysis of phosphorylated proteins” 

2. American Association for Cancer Research (AACR) Annual Meeting. San 
Diego, California, April 10-15th, 2008. Presented poster entitled: “Differential 
phosphoprotein profiling of Tamoxifen response”. 

3. Department of Defense (DOD) Breast Cancer Research Program (BCRP) 
Era of Hope 2008 Meeting in Baltimore, MD in June 25-28th, 2008. Presented 
poster entitled: “Differential phosphoprotein profiling of Tamoxifen response”. 

4. University of Chicago Annual Molecular Biosciences Retreat, Galena, IL 
November 7-9, 2008. Oral presentation titled: “Differential Phosphoprotein 
Proteome Profiling of Tamoxifen Response” 

5. 29th Annual Minisymposium on Reproductive Biology. Evanston, IL, October 
6th, 2008. Presented poster entitled: Presented poster entitled: “Differential 
phosphoprotein profiling of Tamoxifen response”. 

6. Midwest Breast Cancer Research Symposium. Iowa City, Iowa. July 17-19th, 
2009. Presented poster entitled: “Differential phosphoprotein profiling of 
Tamoxifen response”. 

7. Gordon Conference: Hormone Action In Development & Cancer. 
Holderness, NH, July 26-31st, 2009. Presented poster entitled: “Differential 
phosphoprotein profiling of Tamoxifen response”. 

8. University of Chicago Department of Molecular Genetics and Cell Biology 
Miniretreat. Chicago, IL March 11th, 2010. “Differential Phosphoprotein 
Proteome Profiling of Tamoxifen Response”. 

 
B. Publications and manuscripts in preparation 

I. Published manuscripts 
Volchenboum, S.L., Kristjansdottir, K., Wolfgeher, D., and Kron, S.J. Rapid validation 

of Mascot search results via stable isotope labeling, pair picking and deconvolution 
of fragmentation patterns. Mol Cell Proteomics. 2009. 8, pp. 2011-22.  

Kristjansdottir, K., and Kron, S.J. Stable isotope labeling for protein quantitation by     
mass spectrometry. Review. Current Proteomics. 2010. 7, pp. 144-155. 

 
II. Manuscripts in preparation 
Kristjansdottir, K., Greene, GL., Wu, D. and Kron. S.J. Phosphoprotein profiling of 

tamoxifen response in MCF-7 cells. In preparation.  
Volchenboum, S.L., Kristjansdottir, K. and Kron, S.J. Identifier, a rapid search engine 

for high-accuracy stable isotope labeled mass spectrometry data. Modeling protein 
exclusion . In preparation.  
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Conclusions 

I have developed a method for comparison of global phosphoprotein profiles. The 
methodology involves stable isotope labeling, a phosphoprotein affinity step, 1-D SDS-
PAGE and LC-MS/MS. I have performed phosphoprotein profiling of MCF-7 (tamoxifen 
sensitive) and MCF-7/HER2-18 (tamoxifen resistant) cells as a result of a short (30 
minute) tamoxifen treatment. Comparing the results identified 26 proteins that respond 
to tamoxifen differently in MCF-7 (tamoxifen sensitive) and MCF-7/HER2-18 (tamoxifen 
resistant) cells. All but three of these proteins are known to be phosphorylated. Several 
proteins have previously been described as being involved in generation of tamoxifen 
resistance including FADD and PAK1, showing that phosphoprotein profiling is capable 
of identifying proteins relevant to tamoxifen resistance.  

Examining proteins only found in the phosphoenriched section of one of the cell 
lines revealed an abundance of proteins involved in apoptosis. One of these proteins, 
FADD, has previously been shown to result in resistance to tamoxifen when 
phosphorylation on Ser194 is blocked. We found that FADD was present in 
phosphoenriched fraction from MCF-7 cells but was not detected in MCF-7/HER2-18 
cells. This is not due to changes in proteins amounts since the RT-PCR showed no 
chance in mRNA and since Western blots showed similar amounts of FADD present in 
both MCF-7 and MCF-7/HER2-18 cell extracts.  

I show in this report that two known phosphorylation sites in XRCC1, Ser447 and 
Thr453, are detected in the tamoxifen resistant cell line and the levels of these 
significantly decreased after tamoxifen treatment. Mutations affecting XRCC1 protein 
levels and activity have previously been associated with increased breast cancer risk. A 
manuscript describing these results is in preparation.  

In collaboration with Sam Volchenboum, Instructor in Pediatrics and the 
Computational Institute at the University of Chicago, I developed a fast and reliable 
method for automated validation of Mascot search results from high accuracy mass 
spectrometry data which was published the paper in Journal of Molecular and Cellular 
Proteomics. In addition, Jonathan Goya a colleague in the Kron Lab wrote a quantitation 
module to use for analysis of 18O labeled proteomics data. This manuscript is in 
preparation.  
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Manuscript: Volchenboum, S.L., Kristjansdottir, K., Wolfgeher, D., and Kron, S.J. 

Rapid validation of Mascot search results via stable isotope labeling, pair picking 
and deconvolution of fragmentation patterns. Mol Cell Proteomics. 2009. 8, pp. 
2011-22.  

 
Manuscript: Kristjansdottir, K., and Kron, S.J. Stable isotope labeling 
for protein quantitation by mass spectrometry. Current Proteomics. Review. 2010, 7, pp. 
144-155. 
 
 



Rapid Validation of Mascot Search Results via
Stable Isotope Labeling, Pair Picking, and
Deconvolution of Fragmentation Patterns*□S

Samuel L. Volchenboum‡§¶, Kolbrun Kristjansdottir!**, Donald Wolfgeher**,
and Stephen J. Kron!**

Conventional LC-MS/MS data analysis matches each pre-
cursor ion and fragmentation pattern to their best fit
within databases of theoretical spectra, yielding a peptide
identification. Confidence is estimated by a score but can
be validated by statistics, false discovery rates, and/or
manual validation. A weakness is that each ion is evalu-
ated independently, discarding potentially useful cross-
correlations. In a classical approach to de novo sequence
analysis, mixtures of peptides differing only in a carboxyl-
terminal isotopic label yield fragmentation spectra with
single, unlabeled b-type ions but pairs of isotope-labeled
y-type ions, facilitating confident assignments. To apply
this principle to identification by fragmentation pattern
matching, we developed Validator, software that recog-
nizes isotopic peptide pairs and compares their identifi-
cations and fragmentation patterns. Testing Validator 1
on a Mascot results file from FT-ICR LC-MS/MS of 16O/
18O-labeled yeast cell lysate peptides yielded 2,775 pep-
tide pairs sharing a common identification but differing in
carboxyl-terminal label. Comparing observed b- and y-
ions with the predicted fragmentation pattern improved
the threshold Mascot score for 5% false discovery from
36 to 22, significantly increasing both sensitivity and spec-
ificity. Validator 2, which identifies pairs by precursor mass
difference alone before comparing observed fragmentation
with that predicted by Mascot, found 2,021 isotopic pairs,
similarly achieving improved sensitivity and specificity. Fi-
nally Validator 3, which finds pairs based on mass differ-
ence alone and then deconvolutes fragmentation patterns
independently of Mascot, found 964 predicted peptides.
Validator 3 allowed raw mass spectrometry data to be
mined not only to validate Mascot results but also to dis-
cover peptides missed by Mascot. Using standard desktop
hardware, the Validator 1–3 software processed the 11,536
spectra in the 93-MB Mascot .DAT file in less than 6 min (32
spectra/s), revealing high confidence peptide identifica-
tions without regard to Mascot score, far faster than man-
ual or other independent validation methods. Molecular &
Cellular Proteomics 8:2011–2022, 2009.

MS/MS combined with informatics analysis is now a
uniquely powerful approach for identifying the components of
complex protein samples (1–3). Although new technologies
have dramatically enhanced the speed, sensitivity, and preci-
sion of LC-MS/MS instrumentation (4), data analysis has nei-
ther kept pace with nor taken full advantage of these ad-
vances. Determining peptide sequences from fragment ion
spectra remains a difficult problem, and three main strategies
have matured (5). In de novo sequencing, the peptide se-
quence is inferred directly from the fragment ion spectra, and
many algorithms have been developed to automate this proc-
ess, including Lutefisk (6), PepNovo (7), NovoHMM (8), Pep-
tide Identification via Integer linear Optimization (PILOT) (9),
and others (10–13). Incomplete fragmentation patterns and
low signal to noise (10) make this method difficult to imple-
ment as an exclusive means of peptide identification.

The most commonly used method involves comparing ex-
perimental MS/MS spectra to theoretical peptide fragmenta-
tion patterns derived from protein sequence databases (4)
and reporting the best peptide match, which is then propa-
gated forward through the process of determining likely pro-
tein components. Several programs are commonly used, in-
cluding SEQUEST (14, 15), Mascot (16), and X! Tandem (17,
18). What these algorithms share is the determination of a
score for a spectrum-peptide match and subsequently a pro-
tein identification, and it is the way in which these scores are
assigned and interpreted that distinguishes them (19).

The third method for spectrum-peptide matching is a hybrid
of de novo and database searching (5) in which small lengths
of sequence are generated directly from the fragment ion
spectra, and these “sequence tags” (20) are used to corrob-
orate spectrum-database matches. Popular implementations
of this strategy include DirecTag (21), GutenTag (22), and
MultiTag (23). The limitations to this method include the re-
quirement for consecutive fragmentation ions and the reliance
on de novo algorithms to identify sequence tags.

Database search is highly susceptible to both overreporting
false positives (low specificity) and underreporting true posi-
tives (low sensitivity). The search engines provide different
scoring systems that cannot be directly compared, as the
rankings of spectral quality are often based on arbitrary cutoff
values. Recent research has focused less on the sequence
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matching algorithms themselves but more on the statistics
used to evaluate the resulting match scores (24). Pep-
tideProphet was one of the first algorithms developed to
evaluate match scores and assign probabilities by evaluating
each match with respect to all other peptide assignments. By
using machine learning techniques (an expectation-maximi-
zation algorithm), PeptideProphet was shown to have high
discriminating power for database search results (25). Initially
developed for SEQUEST search results, PeptideProphet has
been subsequently adapted for use with database search
results from Mascot and X! Tandem. These components are
combined in Scaffold, a commercial software suite developed
by Proteome Software. An alternative approach is to filter the
primary data to exclude poor quality MS/MS scans prior to the
database search (26), thereby enhancing the likely signifi-
cance of each reported match.

Using a false discovery rate instead of a false-positive rate
is now the standard statistical measure for reporting error
rates in data sets with large numbers of features (e.g. pro-
teomics or genomics data) (5, 27). Target-decoy searching as
an estimate of false discovery rate (FDR)1 involves first con-
structing a database of decoy peptides (28, 29), and this
strategy is being incorporated into PeptideProphet (30, 31).
For each peptide-spectrum match, the target spectrum is
queried against a second (decoy) database with characteris-
tics similar to those of the first (e.g. a database of reversed or
random peptides). Matches to the decoy database are con-
sidered false discoveries, and the number of matches above
a particular cutoff score threshold is reported. The target-
decoy search option is now available in the newest version
(version 2.2) of the database search engine Mascot (Matrix
Science).

Despite these advances in mass spectrometry, database
searching, and statistical approaches to validating matches,
the process of analyzing mass spectrometry data remains
time-consuming and computer processor-intensive, often re-
quiring several steps and various data transformations (19).
To overcome these limitations, we developed a fast and effi-
cient method for peptide identification validation that mini-
mizes the false discovery rate. Our algorithm relies on data
from stable isotopic labeling, which is a standard method for
quantifying relative protein abundance in complex mixtures
(see Ref. 32 and references therein). Carboxyl-terminal label-
ing methods, including trypsin-catalyzed 18O exchange (33),
result in a mixture of pairs of chemically identical but isotopi-
cally distinct peptides. The “light” and “heavy” peptides co-
elute from HPLC but are readily distinguished by precursor
mass (Fig. 1A). Each peptide also has an isotopic envelope
comprised of isotopologues, molecules that are identical in
composition except they can contain any number of isotopes.

In the case of trypsin-catalyzed 18O exchange, two 18O atoms
are substituted for the two carboxyl-terminal 16O atoms.
Comparison of CID fragmentation patterns of carboxyl termi-
nus-labeled light and heavy precursors (or isotopologues)
distinguishes b-type and y-type ions (34, 35). The carboxyl-
terminal fragments (y-ions) appear as light (16O) and heavy
(18O-substituted) forms, but the amino-terminal fragments (b-
ions) display a single shared mass (Fig. 1, B–D).

The technique of using isotopic pairs to enhance peptide
identification is not new, and several authors have recognized
that isotopic labeling could be used to differentiate carboxyl-
terminal from amino-terminal peptide fragments to facilitate
peptide sequence analysis (2, 33, 35–38). This method has
been productively applied to de novo analysis (12, 39–45) and
peptide mass fingerprinting (46). In addition, analogous tech-
niques have been applied to the analysis of mixtures of mod-
ified and unmodified peptides by probing for peptide mass
differences that match known post-translational modifications
(47); other groups have used MS/MS spectra information to
corroborate these matches and remove noise (48, 49). Finally,
isotopic labeling with 18O has been used for manual validation
of peptide identifications by observing the predicted mass
shift of y-ions (50). Nevertheless, this strategy has yet to be
harnessed as a means for automated data analysis and pep-
tide search validation.

The goal of this study was to develop a set of software tools
designed to provide rapid and automatic validation of peptide
assignments by Mascot and to determine the relative benefit
of reducing false discovery and the magnitude of loss of bona
fide identifications. We hypothesized that the characteristic
shifting of y-type ions between fragmentation spectra of light
and heavy precursors might provide a robust check for valid-
ity of peptide assignment by database search. Here we dem-
onstrate the feasibility of quickly and efficiently analyzing
searched mass spectrometry data, determining within min-
utes which peptide and protein assignments are likely valid. In
its simplest form, Validator 1, identified isotopic pairs in a
Mascot results file and improved the 5% FDR cutoff from a
Mascot score of 36 to 22, thereby capturing many true iden-
tifications that would otherwise have been discarded. A more
advanced algorithm, Validator 3, that considers only precur-
sor ion mass, charge, and fragmentation spectral data to
identify isotopic pairs independently of any peptide identifi-
cations, not only rapidly validated the Mascot results but also
discovered peptides that Mascot had failed to match. Our
software suite, Validator 1–3, provides new and robust tools
for rapid validation of searched LC-MS/MS data obtained in
stable isotope experiments, offering improved sensitivity and
specificity over database searching alone.

EXPERIMENTAL PROCEDURES

Standardized and Normalized Data Sets—To provide normalized
data for our analysis, we prepared a complex soluble protein sample
from budding yeast cell lysate. The sample was subjected to prote-

1 The abbreviations used are: FDR, false discovery rate; ROC,
receiver operating characteristic; LTQ, linear trap quadrupole; PME,
precursor mass error.
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olysis by trypsin. In detail, the proteins were mixed with 6 !l of
Rapigest (Waters) and 10 mM tris(2-carboxyethyl)phosphine HCl, de-
natured at 37 °C for 30 min, alkylated with 10 !l of 50 mM iodoacet-
amide at room temperature in the dark for 40 min, and digested with
1:50 (w/w) trypsin in 50 mM ammonium bicarbonate, pH 8.9, at 37 °C
overnight. The Rapigest was removed by adding 5 !l of 1% TFA. The
sample was split and was exchanged in 100% [18O]water or 100%
[16O]water using the 18O Proteome Profiler kit (Sigma-Aldrich).
MALDI-TOF analysis was used to follow the reaction. Finally this
sample was mixed in equal amounts to create a 1:1 16O:18O reference
sample. The resulting peptide mixture was then subjected to reverse
phase nanoelectrospray ionization LC-MS/MS on the LTQ-FT instru-
ment (Thermo) using a standard gradient (Zorbax 300SB-C18 col-
umn, 150 mm ! 75 !m; 0.1% formic acid in water with 5–60%
acetonitrile; 0.5%/min gradient). The LTQ-FT instrument was run in
positive ion mode at 50,000-ppm resolution MS for ICR. Parent ions
were selected for fragmentation by data-dependent analysis using a
cycle of one MS scan for ICR (m/z 400–2000) and up to five MS/MS
scans in the LTQ (m/z 50–2000) of the most abundant ions using
120-s dynamic exclusion. A normalized collision energy of 35 was
used for low energy CID MS/MS of peptide ions. Under these condi-
tions, a high fraction of the most abundant peptides had both the 16O
and 18O monoisotopic species subjected to CID based on our pre-
liminary data. The data set was analyzed by Mascot (version 2.2,

Matrix Science) and X! Tandem (version 2007.01.01.1, Global Pro-
teome Machine Organization) to identify peptides and proteins
from the MS/MS spectra. Mascot was set up to search the
NCBInr_20060910 database (selected for Saccharomyces cerevisiae,
11,101 entries) assuming the digestion enzyme trypsin, a fragment ion
mass tolerance of 1.0 Da, and a parent ion tolerance of 0.2 Da. Double
18O modification of carboxyl-terminal lysine or arginine, oxidation of
methionine, N-formylation of the amino terminus, and iodoacetic acid
derivative of cysteine were specified as variable modifications. X!
Tandem was set to search the scd.fasta.pro database (selected for S.
cerevisiae, 6,794 entries) also assuming trypsin with a fragment ion
mass tolerance of 0.60 Da and a parent ion tolerance of 10.0 ppm.
Iodoacetamide derivative of cysteine was specified as a fixed modi-
fication. Double 18O modification, deamidation of asparagine and
glutamine, oxidation of methionine and tryptophan, sulfone of methi-
onine, tryptophan oxidation to formyl, and acetylation of lysine and
the amino terminus were specified as variable modifications. Scaffold
(version Scaffold-01_06_00, Proteome Software) was used to validate
MS/MS-based peptide and protein identifications. Peptide identifica-
tions are accepted if they can be established at greater than 90.0%
probability as specified by the PeptideProphet algorithm (51). Protein
identifications are accepted at greater than 95.0% probability and
contain at least one identified peptide with probabilities assigned by
the ProteinProphet algorithm. Proteins that contain similar peptides

FIG. 1. Peptide pair identification strategy. A, shown is an example of experimental spectra of a 16O/18O-peptide pair. Each peptide has
an isotopic envelope comprised of three to four different isotopologues containing zero to three molecules of 13C, 15N, or other naturally
occurring stable isotopes. The 18O envelope is shifted by about 2.0 Da, reflecting the difference in mass due to the substitution of two 18O
atoms. Note that the difference of 2.0 Da is due to the peptide having a 2" charge state. Peptide pairs with a 1" charge would be separated
by about 4.0 Da. B, the b-type and y-type ions from the collision-induced dissociation of a peptide are shown. Any carboxyl-terminal
substitution (as in 18O, indicated by *) will affect the y-ions exclusively. C, idealized sample MS/MS spectra from the peptide and ions in B. The
spectra from the 16O- and 18O-peptide forms have similar patterns, although the peak heights may be different. D, top, the two spectra from
C are overlaid to demonstrate that the b-ions will have a nearly identical mass-to-charge ratio, whereas the y-ions will have a shift reflective
of the stable isotope substitution. In the example given, peaks “a” and “k” from C are both b-ions and therefore overlap, whereas peaks “b”
and “l” are y-ions with l being shifted due to the substitution of two 18O atoms. Shifted ions are indicated with a horizontal bar underneath. By
observing which ions overlap and which have shifted, the identities of the b- and y-ions can be inferred (D, bottom).
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and cannot be differentiated based on MS/MS analysis alone are
grouped to satisfy the principles of parsimony.

Software Development—All software analysis was performed on
searched Mascot data (e.g.“.DAT files”). Custom software was written
in Python 2.6. Statistical analysis was performed using both Python
scripting as well as Microsoft Excel. Charts and graphs were gener-
ated using both Python’s Matplotlib library (SourceForge, Inc.) and
GraphPad Prism. Software was run on standard desktop and laptop
computers running both Windows XP (service pack 3) and Macintosh
OS 10.5. Details about software development and implementation are
included under “Results.”

RESULTS

The aim of this study is to describe a fast and efficient
means for validating peptide identifications obtained by
searching 18O-labeled MS/MS data with Mascot. Our ap-
proach is to mine the Mascot .DAT file to extract information
not utilized by Mascot but potentially useful for automated
validation. For the purposes of this study, we refer to a
“query” as any precursor ion and its associated fragmentation
ions, regardless of whether Mascot assigned a match, and to
a “peptide” as any query to which Mascot assigned a match,
regardless of Mascot score and without external validation.
For each query, up to 10 possible peptides are assigned by
Mascot, each with a probability score. For this study, we
examined all query-peptide identifications as well as only the
top scoring match suggested by Mascot. Using a 16O/18O-
labeled data set from yeast cell lysate, analysis of the Mascot
.DAT file revealed 20,759 queries and 17,200 peptide identi-
fications, corresponding to 13,158 unique peptides and 5,962
unique proteins, using only the top suggested Mascot peptide
identification (Table I). The FDR of 5% was achieved at a
threshold Mascot peptide score of 36, and 2% was achieved
at a cutoff score of 42.

The majority of peptides have low Mascot scores (Fig. 2A).
As expected, peptides with the highest Mascot scores tend to
have a low precursor mass error (PME) (Fig. 3A). In fact, the
search results represent two populations: peptides with high
Mascot score/low PME and peptides with low Mascot score/
high PME. A plot of the Mascot score versus the variance of

the PME for all peptide matches above that score illustrates a
steep fall in the variance, plateauing close to a Mascot score
of 35 (supplemental Fig. 1), providing an approximate cutoff
threshold separating the two populations. Of the 17,200 pep-
tides identified by Mascot, 2,308 have scores greater than 35.
The width of precursor mass error range that encompasses
95% of these peptides with high Mascot scores is 0.048 Da,
whereas the interval that covers 95% of all peptides is 0.386
Da (Fig. 3).

FIG. 2. Distribution of Mascot scores. A, the raw Mascot data file
was parsed, and the number of peptides in each score group was
tallied. The vast majority of scores were less than 30. Note that the y
axis has a break at 2,000. See the inset for the full-scale graph with
identical x axis but no break in the y axis. B, Validator 1 finds 16O/18O
pairs in the searched Mascot data file. The distribution of Validator
1-derived peptide scores (black) is seen against the raw distribution
(gray) from A. Again, note the broken y axis and the inset showing the
full y axis scale. At the low end of the scores, Validator 1 rejects most
of the peptides while retaining most of the high scoring peptides. C,
the Validator 2e-identified peptides with fragment ion tallies greater
than 10 (black) are shown compared with the Validator 2 results (gray).
At low scores, Validator 2e rejects most low scoring peptides while
retaining most peptides with high Mascot scores. D, Validator 3e
(black) performs similarly to Validator 2e (gray) despite not utilizing any
Mascot search information.

TABLE I
Validator data

For each version of Validator, the number of pairs, queries, and queries with peptides is shown. In addition, data are displayed after filtering
the raw Mascot data for only those peptides with scores greater than 35. The precursor mass error range corresponds to the dotted (“all”) and
solid (“#35”) lines in Fig. 3. NA, not applicable.

Version Raw Raw #35 1 2 2e 3 3e

Pairs identified NA NA 2,775 3,209 NA 3,779 2,021
Mascot queries 20,759 2,308 2,345 3,185 1,782 3,615 2,310
Queries with peptides 17,200 2,308 2,345 3,177 1,782 3,545 2,289
PME range ($) with 95%: all 0.193 0.024 0.022 0.134 0.042 0.142 0.129
PME range ($) with 95%: #35 0.024 0.024 0.017 0.011 0.011 0.011 0.013
Unique peptides 13,158 580 398 1,564 481 1,881 964
Unique proteins 5,962 186 125 1,150 234 1,391 696
Score at FDR 5% 36 36 22 36 29 37 37
Score at FDR 2% 42 42 32 41 34 43 43
Percentage of queries with Mascot score #35 13.4 100 78.0 46.6 75.2 42.1 57.1
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Validator 1—As a proof of concept, we first sought to find all
16O/18O pairs in the Mascot summary file (“.DAT file”). Here a
16O/18O pair refers to a peptide sequence identified in two
distinct isotopic forms in the same Mascot file as an unlabeled
16O-peptide and as a peptide containing two 18O atoms. The
18O form of each peptide is 4.008491 Da heavier than its
unlabeled 16O form (Unimod). Our first program, Validator 1, is
designed to utilize the peptide identifications made by Mas-
cot. Validator 1 first iterates through all queries looking for
identical top scoring peptides found in both 16O and 18O
forms (a “16O/18O pair”). As the 16O and 18O forms are ex-
pected to co-elute from reverse phase columns, we added a
constraint that the MS/MS scans of the two peptides must
occur within 200 scan units (%2.25 min) of each other. With
these criteria, Validator 1 identified 2,775 pairs representing
2,345 unique matched queries with peptides. These peptides
represented 398 unique peptides and 125 unique proteins

(Table I). This analysis required %10 s of calculation on a
laptop computer. The precursor mass range width that en-
closes 95% of the peptides with Mascot scores greater than
35 was 0.034 Da, whereas the width of the range that encom-
passes 95% of all peptides decreased by 89% compared with
Mascot alone, to 0.044 Da (Fig. 3, A versus B).

There were 223 unique peptides with Mascot scores over
35 that Validator 1 failed to discover as a member of a 16O/18O
pair. Manual examination of the raw spectra for 10 of the
highest scoring of these peptides revealed three scenarios.
For six peptides, the 16O form was fragmented and yielded a
high Mascot score, but the 18O form was not selected for
MS/MS. In one case, the 18O form subjected to MS/MS was
an isotopologue not accounted for by the Mascot search and
thus was not correctly identified. In three cases, a candidate
pair was flagged by Validator 1, but the data turned out to
correspond to two peaks within the isotopic envelope of a
single peptide.

On the other hand, Validator 1 did not reject all low scoring
peptides, particularly where the Mascot identifications yielded
low precursor mass errors. As seen in Fig. 3B, these peptides
represent a “comet tail” in the data, stretching all the way
down to Mascot scores as low as 10. A closer inspection of
these peptides (data not shown) reveals that most were also
found in other queries with high Mascot scores. Nevertheless,
of the low scoring peptides found by Validator 1, there were
21 proteins represented that would not be identified if only
high Mascot scoring peptides were being retained.

Therefore, Validator 1 was able to rapidly identify 16O/18O
pairs within searched Mascot data. Using 16O/18O pairs as
a criterion rather than a simple Mascot threshold retained
most high scoring peptides and rejected most low scoring
peptides but also rescued several low scoring but likely
correct identifications.

Validator 2—Validator 1 relies on Mascot to identify both the
16O- and 18O-labeled peptides. We reasoned that additional
16O/18O pairs might be found in the Mascot .DAT file by
searching for pairs of queries where the precursor masses
were separated by a difference of 4.008491 Da without regard
to any features of the MS/MS data or whether Mascot had
assigned the same, different, or even any identifications.
Thus, the Validator program was modified to start with a query
identified as a 16O- or 18O-peptide and search the Mascot
.DAT file for queries within a range of 200 scan units (2.25 min)
with a precursor mass difference of 4.008491 Da and with a
mass error limit of 3 ppm. Using these criteria, Validator 2
found 3,209 pairs representing 1,564 unique peptides and
1,150 unique proteins.

The most significant distinction between Validator 1 and 2
was the retention of considerably more low scoring peptides.
Notably, of the 3,177 peptides retained by Validator 2, 1,696
had Mascot scores below 35, and many also displayed a high
mass error, suggesting a low likelihood of correct identifica-
tion. These results raised the question of whether using ad-

FIG. 3. Precursor mass error versus Mascot score. Low Mascot
peptide scores, as defined as a score less than 35, are shown in the
shaded gray area. A, the raw data are separated into two distinct
zones: the high Mascot score peptides, most with low precursor mass
error, and the low Mascot score peptides, most with high precursor
mass error. As the Mascot score increases from 0 to 35, the variance
of the precursor mass errors of all peptide matches above this score
falls dramatically (see also supplemental Fig. 1). We determined cut-
offs for precursor mass error that would encompass 95% of all
peptides (dashed lines) and 95% of peptides with Mascot peptide
scores over 35 (solid lines). B, Validator 1 successfully removes most
of the peptides with low Mascot peptide scores. Note the more
narrow 95% range for all peptides (dashed lines) compared with A as
well as the much tighter 95% interval for peptides with Mascot
peptide scores greater than 35 (solid lines). C, Validator 2e-identified
peptides with a fragment ion tally of 10 or more are shown. Note that
although the interval encompassing 95% of the peptides (dashed
lines) is wider than for Validator 1 it is much narrower than for the raw
data. In addition, the 95% interval for peptides with Mascot peptide
scores greater than 35 (solid lines) is narrower than for Validator
1-identified peptides. D, Validator 3e-identified peptides with a frag-
ment ion tally of at least 10 are shown. Again the intervals encom-
passing 95% of the peptides (dashed lines) and 95% of peptides with
Mascot scores greater than 35 (solid lines) are shown.
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ditional criteria based on the MS/MS data embedded in the
Mascot data file might help reveal potentially correct peptide
matches with low Mascot peptide scores while filtering out
incorrect identifications.

Validator 2e—Given that fragmentation spectra are avail-
able for each member of a candidate 16O/18O-peptide pair
identified by Validator 1 or 2, we hypothesized that these data
could be mined to distinguish false identifications. As noted
above, comparing the MS/MS fragmentation of the light and
heavy forms will reveal identical sets of b-ions but distinct
y-ions with pairs of fragments shifted by 4.008491 Da, reflect-
ing the exchange of two 18O atoms for 16O at the carboxyl
terminus (Fig. 1). We therefore extended our program, dubbed
Validator 2e, to take advantage of the embedded carboxyl-
terminal labeling information to distinguish the b-type and
y-type ions, facilitating peptide validation.

As a first step, we confirmed that the MS/MS ions in each
query correspond with a theoretical fragmentation table
based on the sequence of the peptide match provided by
Mascot. For each peptide identification in the Mascot data
file, we calculated the fragmentation table and counted the
number of observed ions that fell within a window of 2000
ppm from a predicted b- or y-ion. As expected, there is a
positive correlation between the number of b- and y-ion
matches and Mascot peptide score (r & 0.596, p ' 0.0001;
supplemental Fig. 2A). To validate Mascot identifications for
16O/18O pairs, we tested whether the following held true:
when pairs of ions matched predicted b-type ions, they should
be identical (non-shifting), whereas those matching y-ions
should differ by 4.008491 Da (shifting). The number of matching
pairs of non-shifting b-ions and shifting y-ions were thus tallied
to generate a “fragment ion tally.” We hypothesized that a high
fragment ion tally would characterize a correct peptide identifi-
cation for a query member of a 16O/18O pair.

For each pair identified by Validator 2, we calculated the
fragment ion tally for each query member based on compar-
ison with predicted fragmentation tables for the highest scor-
ing peptide match provided by Mascot. Fragment ion tally
correlates with a high Mascot peptide score (r & 0.639, p '
0.0001; supplemental Fig. 2B) with a fragment ion tally of 10
corresponding to a Mascot score of 35. We therefore filtered
the list generated by Validator 2 to retain only pairs that
yielded a fragment ion tally of at least 10 with at least two
matching shifting (y-type) ions. The requirement of two y-ion
(shifting) matches will reject pairs of ions derived from the
same isotopic envelope that are predicted to yield many
matching b-ions but no matching y-ions. Calculating fragment
ion tallies for the 3,209 pairs of queries found by Validator 2
yielded 1,782 queries with counts greater than or equal to 10
(Table I). These queries represent 481 unique peptides and
234 proteins. Notably, of the query-peptide matches with
fragment ion tallies of 10 or greater, only 442 (24.8%) had
Mascot scores less than 35. Compared with Validator 2, Vali-
dator 2e eliminates many of the low scoring/high mass error

peptides but retains most of the high scoring/low mass error
peptides (Fig. 2C). Limiting the plot to peptides evaluated with
Validator 2e that yield a fragment ion tally of 10 or greater,
95% of high scoring peptides fell within a precursor mass
error range of 0.022 Da versus a range of 0.084 Da for all
peptides (Fig. 3C). Compared with Validator 1, Validator 2e
found 219 queries, 163 peptides, and 135 proteins not found
by Validator 1 (supplemental Table 1).

Validator 3/3e—As a next logical step, we sought to find
candidate pairs based solely on their mass difference and ion
lists from raw data without regard to any peptide sequence
information provided by Mascot in the .DAT file. Validator 3
identifies pairs much like Validator 2 except for not requiring
that one member of the pair be a Mascot-identified 16O- or
18O-peptide. The program iterates through all queries and
searches for another query with the predicted 4.008491-Da
mass difference, allowing an error of 3 ppm. From the refer-
ence data set, the program identified 3,779 pairs, represent-
ing 3,615 unique queries, of which 3,545 have Mascot-as-
signed peptide identifications. Examination of the data
revealed that some Validator 1 pairs remained unidentified, as
their difference in precursor mass lies outside the 3-ppm
tolerance limit imposed by Validator 3 (data not shown). Vali-
dator 3 found 1,875 queries, 1,540 peptides, and 1,279 pro-
teins not found by Validator 1 (supplemental Table 1).

As with Validator 2e, we extended Validator 3 to 3e by
utilizing the expectation of non-shifting b-ions and shifting
y-ions to perform an internal validation of the proposed pairs,
without relying on the peptide identification(s) provided by
Mascot. Therefore Validator 3 was modified to find pairs of
shifting and non-shifting fragment ions for each pair based on
comparing the two lists of MS/MS ions and finding non-
shifting b-ions and shifting y-ions within a mass tolerance of
2,000 ppm. To decrease the influence of noise, only frag-
ment ions with a peak height of at least 0.5% of the intensity
of the strongest ion were evaluated. To be considered a
shifting or non-shifting pair, the difference in intensity be-
tween the heavy and light forms of the candidate could be
no more than 25%. Again a fragment ion tally was deter-
mined from the number of pairs of candidate b- (non-shift-
ing) and y (shifting)-ions while requiring at least two y-ions.
To validate the scoring scheme, the fragment ion tally and
Mascot peptide scores were compared, and as with Valida-
tor 2e, we found a significant positive correlation (r & 0.395,
p ' 0.0001; supplemental Fig. 2C).

Because two complete sets of MS/MS ions are being com-
pared without regard to a predicted fragmentation pattern, we
expected to identify more pairs with higher fragment ion tal-
lies. To facilitate comparison with Validator 2e, we filtered
based on a fragment ion tally cutoff of 10, yielding 2,310
queries (Table I). These correspond to 964 peptides and 696
proteins identified. As expected, Validator 3e was less selec-
tive than Validator 2e in rejecting low scoring peptides (Fig.
2D) while retaining a higher proportion of high mass error
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peptides (Fig. 3D). The precursor mass error range containing
95% of peptides with scores greater than 35 was quite similar
to that of Validator 2e, 0.026 versus 0.022 Da, but consider-
ably wider for all peptides, 0.258 versus 0.084 Da. These data
show that a strategy agnostic to Mascot-specific peptide
information can be used to identify peptides highly likely to
represent bona fide 16O/18O pairs, providing independent val-
idation for Mascot identifications.

Comparison with Scaffold—The commercial proteomics
software suite Scaffold (Proteome Software) uses the Peptide-
Prophet algorithm (25) to generate lists of peptides and pro-
teins with an associated probability. Many groups use Scaf-
fold for downstream data analysis, and we feel that it is
important to compare the performance of our software with
that of this commonly used analysis tool. Using the same
Mascot .DAT file, the data were analyzed in Scaffold using
probability cutoffs for peptides and proteins of 90 and 95%,
respectively. The list of proteins meeting these criteria along
with the constituent peptides was compared with the peptide
and protein lists generated by Validator versions 1–3e (Table
II). Using the top scoring Mascot peptide identifications only,
Validator 1 found 69.5% of the peptides and 91.9% of the
proteins found by Scaffold. The performance of Validator 2e
was similar, identifying 62.6 and 84.9% of the peptides and
proteins, respectively. Validator 3e found 59.1% of the pep-
tides and 88.4% of the proteins found by Scaffold. The seven
proteins identified by Scaffold but not identified by Validator 1
were examined. Four proteins had peptide pairs with the MS
mass difference outside of the Validator 3e tolerance of 3
ppm. One protein had a fragment ion tally below the cutoff
limit of 10. Two proteins were identified solely from 16O-
peptides with no 18O partner and would thus not be identified
by any form of the Validator software.

Corroboration of Validator 1-identified Peptide Pairs—Re-
turning to the 16O/18O pairs identified by Validator 1, we

sought to corroborate the pairs by analysis of shifting and
non-shifting fragment ions. The Validator 3e program was
extended to analyze all Validator 1-identified pairs, first by
finding all shifting and non-shifting ions between the two
MS/MS ion lists. Then the list of matches was compared with
the predicted fragmentation table for the Mascot-identified
peptide to calculate a fragment ion tally. To determine the
significance of each potential match, the following algorithm
was used: for each potential peptide pair, we randomly per-
muted the peptide sequence 30 times, each time computing
the fragmentation table for the random peptide and determin-
ing a fragment ion tally. Based on the distribution of fragment
ion tallies for the randomly permuted peptides, a 95% confi-
dence interval was determined. Using a criterion that the
fragment ion tally for the Mascot-identified peptide must fall
outside this range, the fragment ion tallies for 2,626 (94.6%) of
the 2,775 Validator 1-identified peptides were found to be
significant. In other words, using internal pair validation based
on matching shifting and non-shifting MS/MS ions, we were
able to corroborate almost every 16O/18O pair found by Vali-
dator 1. This is highly significant as it both demonstrates the
strength of using 16O/18O pair finding as a route to high
confidence peptides and validates our method of peptide
validation by matching MS/MS ions.

Statistical Analyses—We next sought to analyze our results
by applying a conventional validation method of false discov-
ery rate determination and receiver operating characteristic
(ROC) curve plotting. Whenever a protein sequence from the
target database is tested, a random sequence of equal length
and similar amino composition is generated and tested (Ma-
trix Science and Refs. 29 and 52). Any matches to the decoy
database are assumed to be false positives, and this ap-
proach assumes that matches to the decoy peptides have the
same distribution as false-positive matches to the original
target data (5). For calculation of FDR at a given threshold

TABLE II
Scaffold comparison

Results are shown comparing the performance of Validator versions 1–3 with the peptide and protein output from the commercial software
package Scaffold. In addition, data are displayed after filtering the raw Mascot data for only those peptides with scores greater than 35. The
Scaffold filtering criteria were to include only peptides with a 90% confidence, proteins with a 95% confidence, and only those for which there
were at least two unique peptides identified. For instance, using only the top peptide match from Mascot for each query, Validator 1 captured
69.5% of the peptides and 91.9% of the proteins as identified by Scaffold. Also shown are results when using all possible peptide and protein
guesses by Mascot. ID’d, identified.

Version Raw Raw #35 1 2 2e 3 3e

Top Mascot query match
Percentage of Scaffold peptides ID’d 99.6 99.4 69.5 66.1 62.6 67.1 59.1
Percentage of Scaffold proteins ID’d 100 100 91.9 93.0 84.9 94.2 88.4
Percentage of peptides ID’d not in Scaffold 96.4 18.8 18.6 80.4 39.7 83.4 71.7
Percentage of proteins ID’d not in Scaffold 97.5 56.8 47.6 90.2 64.8 91.6 84.7

All Mascot query matches
Percentage of Scaffold peptides ID’d 100 99.8 71.1 68.9 64.4 69.9 60.7
Percentage of Scaffold proteins ID’d 100 100 97.7 98.8 95.3 98.8 96.5
Percentage of peptides ID’d not in Scaffold 99.5 96.7 95.9 98.5 97.4 98.6 98.1
Percentage of proteins ID’d not in Scaffold 98.2 97.6 96.9 97.9 97.5 97.9 97.7
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score, we used the method described by Käll et al. (27, 29) of
dividing the number of decoy peptides identified (with scores
over the threshold) by the number of target peptides identified
(with scores over the threshold score). In general, the identi-
fied decoy peptides have low Mascot peptide scores and high
precursor mass errors (supplemental Fig. 3). Searching the
data set with Mascot against the reference proteomes of
17,200 target peptides and 17,687 decoy peptides yielded an
FDR of 5% at a Mascot peptide score of 36 (Fig. 4A). At this
cutoff score, Mascot retains 2,250 target peptides and 106
decoy peptides. We were interested in comparing the features
of decoy peptides as an independent means of estimating the
ability of Validator to decrease FDR. We therefore applied this
test to analyze the filtering ability of Validator versions 1–3
(Table I). As an example, recall that Validator 2e identifies
pairs by first finding a pair member that Mascot has identified
as having either a carboxyl-terminal 16O or 18O and then
finding the other pair member by searching for a peptide with
the appropriate difference in m/z. Using this Mascot-identified
peptide for each pair member, the program identifies the b-
and y-ions from the list of MS/MS ions. This list is searched
against the list of MS/MS ions from the isotopic partner to
determine the number of non-shifting (b-type) and shifting
(y-type) ions, and the sum of these is the fragment ion tally.
Peptide-spectrum matches with a fragment ion tally of 10 or
greater are retained. Validator 2e retains 1,782 target but only
650 decoy peptides. The majority of decoy peptides have a
low Mascot score so that an FDR of 5% is achieved at a cutoff
score of 29 (Fig. 4B). At that score, the algorithm retains 1,457
target peptides and 62 decoy peptides.

Receiver operating characteristic curves are a useful way to
visualize the relationship between the sensitivity and specific-
ity of a test. We used ROC analysis to probe the relationship
between sensitivity and specificity for Mascot peptide scores

over all data, prefiltered data, and Validator-filtered data. For
a typical mass spectrometry experiment, a true ROC curve
cannot be plotted because the true-positive rate is unknown.
Typically the search results from the target and decoy data
sets are used to approximate the sensitivity and specificity of
the search engine filter (Matrix Science). Sensitivity is approx-
imated by the ratio of the number of queries with peptide
scores above a given value to the total number of queries.
Likewise specificity is approximated by the ratio of the num-
ber of decoy queries with assigned peptides above a given
score to the total number of decoy peptides. ROC analysis of
the full set of Mascot-searched data demonstrates poor sen-
sitivity and specificity throughout most of the range of score
thresholds (Fig. 5A, stars). It is only at a very low threshold
score that the sensitivity approaches 100% (capturing all
correct identifications) while the specificity is close to zero
(capturing all incorrect identifications). As expected, restrict-
ing the ROC analysis to peptides with Mascot scores above
10 or above 35 (Fig. 5A, solid and open squares) improves
sensitivity and specificity. When the Validator 1 filtering algo-
rithm is applied to the data (Fig. 5A, triangles), the ROC curve
demonstrates a stronger relationship between sensitivity and
specificity with a sensitivity of 80% and specificity of 89% at
a threshold score of 35 (Fig. 5A, arrow). The performance of
Validator versions 2, 2e, and 3e are similarly compared in Fig.
5B. Note that Validator 2e has the best ROC curve with a
sensitivity of 80% and a specificity of 94% at a Mascot
peptide score threshold of 32 (Fig. 5B, arrow).

Corroboration of Validator 3-identified Peptide Pairs—A
schema for corroboration of Validator 3-identified peptide
pairs is shown in Fig. 6. For the pairs identified by Validator 3e,
we utilized the Mascot information, where available, to deter-
mine the significance of the match. If the Mascot identification
was the same for both members of the pair, we determined

FIG. 4. Analysis of FDRs. A, number
of Mascot peptide-spectrum matches
for target (solid) and decoy data (dotted).
The total number of matches with pep-
tide scores over the given Mascot cutoff
score is shown, and the score threshold
for an FDR of 5% is indicated. B, number
of Validator 2e matches for target data
(solid) and decoy data (dotted). Note the
different y axis scale compared with A. C
and D, false discovery rate for raw Mas-
cot and data filtered by Validator ver-
sions 1, 2e, and 3e. False discovery rate
is the number of decoy peptides divided
by the number of target peptides with
scores exceeding a given threshold. In
D, the black lines mark the Mascot pep-
tide score cutoffs to achieve an FDR of
5% for Mascot (35.6) and Validator 1
(22), 2e (29), and 3e (37).

Rapid Validation of Mascot Search Results

2018 Molecular & Cellular Proteomics 8.8

 at UNIV O
F CHICAG

O
 on August 28, 2009 

www.m
cponline.org

Downloaded from
 



the significance of the match using the corroboration strategy
of determining fragment ion tallies after randomization of the
candidate peptide. Of the 1,270 pairs where the peptide iden-
tifications were the same, the score was found to be signifi-
cant in 1,258 pairs. For the 741 cases where the Mascot
identifications were to different sequences, or only one mem-
ber of a pair had an identification, the same technique was
applied to determine the significance. In 621 cases, the cor-
roboration score was significant for at least one matched pep-
tide. For the 130 pairs where there was no corroboration or
where neither peptide had a Mascot identification, 31 could be
identified using X! Tandem. Of these, we were able to corrob-
orate 19 using the randomization strategy. This left only 133
pairs that passed the fragment ion tally threshold of 10 but
lacked any peptide identification to validate. Overall we were
able to corroborate 1,898 of 2,021 Validator 3e pairs (93.9%).

Performance—All versions of Validator are written in Python
version 2.6 running on desktop and laptop hardware. Versions
were tested both in Windows XP and Mac OS X environments.
Our reference Mascot .DAT data file is 92.8 MB and 1.24
million lines, consisting of 11,536 scans, 20,759 queries, and

their analysis. On standard hardware (e.g. Intel Core-2 Duo
processors with 2–4 GB of RAM), Validator versions 1–3 run in
sequence in less than 6 min (%32 spectra/s), including a
complete parsing of the .DAT file, pair finding, and corrobo-
ration and full FDR analysis. Validator 1 by itself runs from
start to finish in 70 s. Most of this time is spent building the
query dictionaries, and once loaded, Validator 1 is able to find
all 16O/18O pairs in about 10 s, including decoy search and
false discovery rate determination. This corresponds to
processing #1,000 spectra/s. Once optimized and com-
piled, it is expected that Validator should be able to run
several times faster. To facilitate further development, soft-
ware will be available freely both as stand alone code as
well as a Web-based tool (www.msvalidator.org).

DISCUSSION

We have developed Validator, a novel proteomics database
search validation software that provides a direct and inde-
pendent means to validate peptide identifications provided by
Mascot analysis of tandem mass spectrometry data. Our
algorithm is based on LC-MS/MS analysis of a mixture of
carboxyl-terminal stable isotope-labeled and non-labeled
peptides, a common sample in quantitative mass spectrom-

FIG. 5. ROC curves. For a given threshold Mascot peptide score,
the sensitivity is the ratio of the number of identifications with scores
greater than the cutoff score to the total number of queries, whereas
the specificity is the ratio of the number of decoy peptide identifica-
tions over the cutoff score to the total number of decoy peptide
identifications. A, ROC curves for Mascot-searched data and Valida-
tor 1-filtered peptides. Validator 1 (triangles) outperforms a simple
score cutoff of 35 (open boxes). B, ROC curves for Validator versions
1–3. Both Validator 1 and 2e outperform using a simple Mascot score
cutoff of 35 (open boxes).

FIG. 6. Schema for corroborating Validator 3e-identified peptide
pairs. The tallies reflect the results for the test data set. If the Mascot
identification (ID) was the same, the shifting and non-shifting ions
were matched against the fragmentation table. 1,258 of 1,270 pairs
were corroborated this way. Of the remaining pairs, if at least one had
a Mascot identification, the shifting and non-shifting ions were com-
pared with the theoretical fragmentation table, and if one or both had
a valid fragment ion tally, it was assumed correct. This was true for
621 pairs. Of the remaining pairs, a search was performed using X!
Tandem, an alternate search engine, and if a peptide was identified,
the corroboration was repeated. For 31 peptides, an identification
was made using X! Tandem, and for 19 of these, the match was
corroborated with the identified ions. For the remaining pairs (133 in
this case), a manual review will need to be performed to determine the
identity of the peptide and the validity of the match.
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etry (32, 53–57). We exploit the characteristic fragmentation of
isotopically labeled peptides to enhance their identification, a
well established principle that goes back to the period pre-
ceding the modern era of ESI and LC-MS/MS (36, 37) and has
since been applied effectively by a number of investigators
(e.g. Refs. 2, 5, 12, 14, 33, 35, 38–48, and 50). Where both the
light (unlabeled) and heavy (labeled) forms of a peptide are
selected for fragmentation, the resulting spectra can be com-
pared, thereby distinguishing pairs of non-shifting b-ions from
pairs of y-ions that display a shift determined by the isotopic
label. These data are then used to test the validity of Mascot
peptide identifications, comparing observed with predicted
fragmentation patterns. We found that this approach allows
rapid and efficient automated filtering of Mascot analysis of
LC-MS/MS data to improve both the sensitivity and specificity
of peptide identification while salvaging potentially useful low
scoring peptides not captured by conventional validation
strategies.

Our naive, first approach was to rapidly identify all Mascot-
derived 16O/18O pairs from a Mascot .DAT file where both
peptides received the same identification. Our data show that
a majority of the highest scoring peptides are validated by this
simple strategy, and this method was not only able to find
91% of the proteins identified by the commercial analysis
package Scaffold but also to capture peptides where the
Mascot scores would have fallen below any standard signifi-
cance threshold. This analysis takes less than 10 s and results
in a list of very high confidence peptide and protein identifi-
cations. The surprising performance of this simple approach
probably reflects the high bar required for Mascot to inde-
pendently match each of the fragmentation spectra to the 16O
and 18O forms of the same peptide, even when the resulting
scores fall below normal significance thresholds. In turn, this
single criterion efficiently rejects most false identifications as
from decoy data.

Validator 2 relaxes the requirement for Mascot to make the
same identification for both spectra in a pair and simply seeks
a partner for each 16O- or 18O-labeled peptide based on the
expected difference in precursor mass. We have shown that
this is also a fast and reliable way of identifying pairs, and we
found many 16O/18O-labeled potential matches not identified
by Validator 1. With Validator 2e, we extracted the b-type
(non-shifting) and y-type (shifting) fragment ions from the
MS/MS spectra of each pair and then compared these data
with the theoretical peptide fragmentation table calculated
from the Mascot peptide identifications. Validator 2e con-
firmed both low and high scoring Mascot identifications but
also rejected many others, including nearly all high scoring
matches to the decoy database. Thus, Validator 2e was able
to achieve an FDR of 5% at a score of 29 versus 36 for Mascot
alone. These data suggest that for any arbitrary level of sig-
nificance running Validator can significantly increase confi-
dence in peptide identifications independently of the Mascot
score.

To develop a validation scheme agnostic to Mascot-derived
information, we reasoned that peptide pairs could be found
based only on the difference in precursor mass. Validator 3
was able to quickly find all Validator 2-identified pairs as well
as many others. Here, even though in many pairs neither the
light nor heavy forms were matched by Mascot, we again
wanted to corroborate the peptides by matching shifting and
non-shifting ions. By comparing the two MS/MS ion series
directly, shifting and non-shifting ions were rapidly identified
by Validator 3e, and we were able to confirm the majority of
high Mascot scoring peptides by tallying the number of shift-
ing and non-shifting ions and again efficiently reject Mascot
decoy matches. In addition, Validator 3e validated many pairs
that had received low Mascot scores and even determined
fragmentation patterns for pairs of queries for which Mascot
had made no assignments at all.

Using this fragment ion matching scheme, we were able
to corroborate most of the 2,775 pairs found by Validator 1.
To study Validator 3-identified peptides, we applied a more
complicated but systematic approach and corroborated
94% of peptide pairs by combining multiple analysis meth-
ods including X! Tandem and manual validation. These re-
sults demonstrate that we can quickly ('5 min) parse a
Mascot results file, returning a list of high confidence pep-
tide pairs, many of which would be missed using conven-
tional score cutoff techniques.

Because our software is designed to analyze data from
samples that are a mixture of peptides labeled at the carboxyl
terminus with either 16O or 18O, there is some concern that
MS analysis of the mixture will result in fewer protein identi-
fications than for an unlabeled sample due to an increase in
fragmentation of “redundant” isotopologues at the expense of
other peptides. Indeed when we analyzed 16O and 18O sam-
ples separately, we found that Mascot identified about 30%
more peptides in either singly labeled sample than when the
MS was performed on the 1:1 mixture. Thus, we modified
Validator to allow for separate 16O and 18O fractions to be
combined and analyzed as a single data set, and as expected,
analysis of the combined fractions rescues the lost identifica-
tions (data not shown). Whether analyzed separately (requiring
more MS time) or together (and potentially losing some protein
identifications) Validator can accommodate the data analysis.

We intend to provide Validator versions 1–3 both as a
downloadable, open source program and as a Web-based
tool for parsing and analyzing searched Mascot data. In ad-
dition, this approach is readily applied to other labeling
schemes used for quantitative analysis, such as stable iso-
tope labeling by amino acids in cell culture (SILAC) or ICAT.
Thus, we intend to adapt the software to accommodate other
stable isotope tags. Analysis will also be extended to other
search platforms such as SEQUEST or X! Tandem.

This study raises the possibility of implementing a new
approach to proteomics data acquisition and analysis to
speed up and enhance protein identification based on iden-
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tifying peptides “on the fly” during the LC-MS/MS run. Our
data suggest that peptides might be readily identified, even in
a complex sample, based on detecting pairs of precursor ions
with a characteristic mass difference. Then MS/MS could be
performed on both the heavy and light forms followed by
comparison to detect shifting and non-shifting fragment ions.
The lists of precursor ion masses and b- and y-ions deter-
mined from such a match could be used to generate se-
quence tags as done by Mann and Wilm (20) to directly
identify each peptide and thus the protein. With such a strat-
egy, protein identification in real time during the LC-MS/MS
run is entirely feasible from a computational perspective. To-
ward these ends, we anticipate pursuing rapid recognition of
16O/18O pairs in raw LC-MS/MS data and interrogating pairs
of fragmentation patterns to search for matching shifting and
non-shifting ions.

In its current incarnation, our Validator software offers a
simple and powerful tool to filter searched tandem mass
spectrometry proteomics data. By applying the techniques
outlined above, a list of high confidence peptide and protein
identifications can be obtained within minutes, thus reducing
the complexity of downstream proteomics analyses.
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ABSTRACT: Mass spectrometry has become a routine instrument to identify proteins and peptides from simple or complex 
samples. Although identification can be confidently determined from a single experiment, quantitation requires multiple 
replicates and careful analysis. Alternatively, stable isotopes can be used to obtain relative quantitation of proteins and 
peptides from fewer replicates. Conventionally, half of a sample is labeled with stable isotope and mixed with the other 
half of unlabeled sample. The mixed sample is analyzed by mass spectrometry and because the stable isotope does not 
change the chemical properties of the peptide, the intensities of the unlabeled and labeled peptide can be directly com-
pared. Absolute quantitation is obtained by adding a known amount of stable isotope labeled peptide or protein and com-
paring to an unlabeled counterpart. Stable isotope labeling methodologies can be divided into three categories: Chemical, 
enzymatic and metabolic. Here we provide an up-to-date review comparing the benefits and drawbacks of all three stable 
isotope labeling methodologies and briefly describe quantitation software solutions. In addition to quantitation, stable iso-
topes have also been used to identify post-translational modifications in proteins, identify components of DNA-protein 
and protein-protein complexes and to distinguish background contaminants from experimental results. Finally, we de-
scribe how fragmentation patterns from stable isotope labeled peptide and unlabeled peptides can improve peptide and 
protein identification and validation.  

Keywords: Mass spectrometry, quantitation, stable isotope, isobaric, labeling, chemical, metabolic, enzymatic, iTRAQ, SI-
LAC, ICAT, proteomics, software. 

INTRODUCTION 

 The combination of complete proteolysis, peptide separa-
tion by reverse-phase liquid chromatography, and detection 
by electrospray ionization and tandem mass spectrometry 
(LC-MS/MS, reviewed in [1] offers a powerful approach to 
comprehensive detection of the proteins and their modifica-
tions in complex samples. It has long been recognized that 
along with making the mass measurements of pe ptide ions 
and their fragments required for identification, LC-MS/MS 
instruments also record peptide ion intensities, offering the 
potential for d irect measurement of pe ptide concentration 
and thereby protein abundance. However, the extent of ioni-
zation of peptides by electrospray ionization is dependent on 
peptide sequence and modification, elution conditions, com-
plexity of the sample and other factors. As a result, the abso-
lute intensities of i ons derived from non-identical peptides 
cannot provide accurate or d irect quantitation. Approaches 
such as peptide ion chromatogram extraction and spectral 
counting have been developed to obtain relative quantitation 
of protein abundance [2-10]. These approaches, collectively 
termed “label-free” quantitation, require extensive analysis 
of reference samples and/or significant data redundancy, 
often requiring many hours of m ass spectrometry time per  
sample. Although highly promising, label-free approaches 
remain impractical for us ers lacking access to dedicated 
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mass spectrometry instrumentation and advanced informatic 
approaches.  
 Stable-isotope labeling provides an attractive alternative 
to label-free approaches. A s table-isotope labeled peptide 
and its unlabeled counterpart have the same chemical for-
mula and structure and thus (almost) identical chemical 
properties, such that they are expected to elute together from 
reverse phase and then ionize and fragment identically in the 
mass spectrometer, yet can be followed independently based 
on their mass differential. Combining the light (unlabeled) 
and heavy-isotope labeled peptides in one sample allows for 
direct comparison of ion intensities. In principle, this offers 
highly accurate relative quantitation and avoids the need for 
significant data redundancy. Background peaks are readily 
distinguished from “real” peptides insofar as the “real” 
peptides are represented by both light and heavy forms with 
a characteristic mass offset. With these and other advantages, 
stable-isotope labeling would appear to satisfy the criteria for 
an ideal quantitative mass spectrometry strategy. However, 
challenges remain to be addressed before stable-isotope 
quantitation becomes a straightforward, robust and reliable 
approach accessible both to non-experts and users of service 
laboratories. Stable-isotope labeling of peptides/proteins can 
be performed using chemical, enzymatic or metabolic meth-
ods and each one of these methods has been reviewed indi-
vidually [11-13]. Here, we provide an up-to-date and critical 
analysis comparing the benefits and drawbacks of all three 
stable-isotope labeling methodologies and explore the state-
of-the-art, caveats and concerns and emerging new applica-
tions of these powerful approaches.  
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 Several articles have highlighted the importance of high 
mass accuracy for bot h protein identification and quantita-
tion [14-16]. Readers are likely to see increasing access to 
commercially available reliable, high mass accuracy, high-
resolution mass spectrometers capable of hi gh-throughput 
tandem mass spectrometry, that obviate many challenges for 
quantitative analysis of data from low-resolution mass spec-
trometers. Thus, this review will only cover the use of stable 
isotopes in high-resolution mass spectrometers.  

STABLE ISOTOPES IN NATURE: ISOTOPIC ENVE-
LOPE FOR PEPTIDES 

 Isotopes of an element share the same number of protons 
but distinct atomic weights due to different numbers of neu-
trons. Only a small number of pos sible isotopes, limited to 
those with the right numbers of neutrons to balance electro-
static and strong binding forces in the atomic nucleus, are 
sufficiently stable to be non-radioactive and thereby accumu-
late in Nature. Though most possible isotopes formed via 
fusion or fission reactions are profoundly unstable and decay 
instantaneously, some remain intact with half-lives from a 
few minutes to millenia and are considered radioactive. La-
beling of proteins with atomic isotopes to follow changes in 
protein abundance or modification in vivo has a long history. 
Conventional methods dependent on ra dioactive isotopes 
used as tracers remain useful to detect rates of protein syn-
thesis and degradation, typically via pulse-chase approaches. 
Here, a short period of m etabolic incorporation of la beled 
amino acids synthesized with a high specific activity of 3H, 
14C or 35S isotopes leads to transient labeling of proteins. The 
kinetics of t ranslation, maturation and/or proteolysis can be 
followed using methods such as immunoprecipitation, gel 
electrophoresis and detection of be ta particle emission by 
autoradiography. Given the low natural background, the beta 
decay events can be readily detected with high signal-to-
noise. Thus, even trace radioactive isotope labeling is suffi-
cient for sensitive detection and precise quantitation.  
 However, for stable-isotope labeling, trace incorporation 
is not sufficient. Nearly all of the elements that are common 
in proteins including carbon, hydrogen, oxygen, nitrogen, 
and sulfur, have two or m ore isotopes with measurable 
abundance in Nature, with the lightest of t hese present in 
greater abundance than the others. For example, carbon is 
found in three forms in nature, the predominant stable "light" 
isotope 12C (98.89%), a stable heavy isotope of 13C (1.11%) 
and a radioactive heavy isotope of 14C (trace amounts). Ni-
trogen is found in two forms: light 14N (99.63%) and a stable 
heavy isotope of 15N (0.37%). Oxygen is present predomi-
nantly as 16O (99.76%), but 17O (0.04%) and 18O (0.20%) are 
comparatively common stable isotopes. Sulfur is present as 
32S (94.93%), 33S (0.76%), 34S (4.29%) and 36S (0.02%). Fi-
nally, hydrogen is predominantly 1H (99.98%), but 2H (deu-
terium, 0.02%) and traces of 3H (tritium) are present. In gen-
eral, heavy isotopes display a kinetic isotope effect on 
chemical reactions, slowing reaction rates and leading to a 
comparative underrepresentation in complex molecules, as 
are made by living organisms. However, save for deuterium, 
when incorporated into amino acids, the different isotopes 
are (mostly) indistinguishable to biological organisms and 
are incorporated non-discriminately into proteins. Since car-
bon and nitrogen are the most common atoms in peptides 

and 13C and 15N are abundant in nature, they, along with 34S, 
are the predominant heavy isotopes naturally present in pro-
teins. As a result, instead of each tryptic peptide having a 
single mass, mass spectrometry spectra reveals a collection 
of different masses in proportions that reflect the natural 
abundance of isotopes. Fig. (1) shows a collection of peaks 
all representing isotopic forms of a single peptide, termed an 
isotopic envelope. A pattern of four major peaks with a char-
acteristic pattern of intensity are detected at 790.89, 791.39, 
791.89, 792.39, 792.89 (mass/charge). The first peak at 
790.89 m/z is designated as the monoisotopic ion of the 2+ 
charged peptide, representing the form that corresponds to 
the chemical formula and contains only the common isotopes 
1H, 12C, 14N, 16O, etc. The second peak at 791.39 is 0.5 m/z 
units higher than the monoisotopic peak. This corresponds to 
an ~1 Dalton increase in mass due to the presence of a single 
stable isotope. Most of t his peak is due to peptide iso-
topologues carrying a single 13C, and the m/z shift corre-
sponds to the mass of the additional neutron divided by the 
charge of the peptide, 2. The third peak at 791.89 represents 
the peptide with two stable isotopes, often a p air of 13C's or 
one 13C and one 15N or a  single 34S or 18O, divided by the 
charge of the peptide, 2, to give an m/z shift of 1 and so on. 
Note that each of these peaks includes forms with slightly 
different masses, due to the individual mass defects (binding 
energy) of t he different stable-isotope nuclei. The intensity 
of each peak is defined by a combination of the abundance 
of specific isotopes in Nature and the occurrence of e ach 
element in the peptide. For peptides of roughly twenty resi-
dues or greater, the +1 peak will have a greater abundance 
than the monoisotopic form and for most proteins (e.g. > 100 
residues), the monoisotopic form cannot be detected. Taken 
together, the pattern and intensity of each isotopic envelope 
of peptide sequences can be predicted (described in [17]). 
Several open source software tools are available to predict 
isotopic envelopes such as Isotopica [18] and Envelope [19]. 
Isotopic envelopes can be sufficiently resolved on hi gh-
resolution and high precision mass spectrometers to provide 
an additional criterion that can enhance the confidence of 
peptide identifications.  
 In general, the challenges of stable isotope-based quanti-
tation were addressed long ago in the development of analy-
sis methods for i sotope-dilution mass spectrometry as re-
viewed in [20]. However, the classical approaches do not 
scale directly to analysis of macromolecules. As a conse-
quence of the high natural abundance of stable isotopes and 
the large number of atoms in each peptide, it follows that in 
order to obtain sufficient signal-to-noise to distinguish la-
beled from unlabeled forms of a  peptide, the stoichiometry 
of artificial incorporation must be relatively high in the 
heavy "reference" sample. In practice, a shift of 2 Da or 
more between the most abundant isotopologues of the "light" 
and "heavy" labeled peptides is required to obtain satisfac-
tory quantitation. 

LABELING OF PEPTIDES AND/OR PROTEINS  
USING STABLE ISOTOPES 

 In the past decade, several effective methods for s table-
isotope labeling of peptides and proteins have been reported 
and used to determine the relative abundance of prot eins 
using mass spectrometry [21-23]. Common to all these tech-
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niques is metabolic, enzymatic or chemical incorporation of 
a labeling moiety being enriched with heavy stable isotopes 
such as deuterium, 13C, 18O, or 15N. The isotope-labeled 
sample is mixed with an equal amount of unlabeled sample 
to provide relative quantitation (heavy/light ratio). An over-
view of stable-isotope labeling methods is presented in Table 
1 and Fig. (2). 

METABOLIC LABELING 

 Uniform metabolic labeling of orga nisms with heavy 
isotopes dates from shortly after the discovery of heavy wa-
ter in the early 1930's and is found in a number of applica-
tions, including increasing the sensitivity and resolution of 
NMR. Indeed, stable-isotope labeled nutrients derived from 
micro-organisms cultured in 2H, 13C and/or 15N have long 
been commercially available and comparatively inexpensive. 
Metabolic labeling for qua ntitation was first introduced to 
proteomics by t he Chait group [24] who gre w yeast on a  
commercial rich media derived from 15N-enriched algal hy-
drolysate and measured relative abundance of phosphopep-
tides in the light and heavy samples by MALDI mass spec-
trometry. Analogous approaches have been applied with a 
number of organisms including worms and flies, culminating 
with the work of Wu et al. [25] who metabolically labeled a 
rat by fe eding with 15N-enriched algae to produce tissue-
specific internal standards for global quantitative proteomic 
analysis. A disadvantage of this approach is that the distribu-
tion of isotopic forms for each peptide depends on the amino 
acid composition, complicating quantitative analysis and 
manual validation.  

Stable-Isotope Labeling in Cell Culture (SILAC) 

 Currently, the most widely used metabolic labeling ap-
proach for protein quantitation is SILAC, stable-isotope la-
beling with amino acids in cell culture [26-29]. When cells 
are grown for s everal doublings in tissue culture with a sta-
ble-isotope labeled form of an essential amino acid (e.g. ly-
sine) as the sole source and at a small excess, it is incorpo-
rated into newly synthesized proteins until all proteins are 
homogeneously labeled (Fig. 2, right panel). Although any 
of the 20 naturally occurring amino acids could be used as a 
precursor for la beling, several factors argue for s pecific 
amino acids being selected for S ILAC (reviewed in [30]). 
The most common is leucine, followed by lysine, arginine, 
and to a lesser extent serine, glycine, histidine, methionine, 
valine, and tyrosine. The most common isotopes in SILAC 
are 13C and 15N, since they demonstrate less kinetic isotope 
effect than 2H and do not  change the elution profiles of la -
beled peptides in reverse phase HPLC chromatography [31-
33].  
  Trypsin is the most common protease used in pro-
teomics, cleaving carboxyl-terminal to lysine and arginine 
residues. Therefore, each tryptic peptide is predicted to con-
tain either a single, carboxyl terminal lysine or a rginine. 
Growing cells in the presence of stable-isotope labeled argin-
ine and lysine as the sole source, followed by trypsin diges-
tion, yields tryptic peptides terminated by a  stable-isotope 
labeled amino acid. With a mass difference of typically 4 to 
10 due to labeling of the single terminal lysine or arginine, 
most pairs of peptides can be easily recognized by their off-
set envelopes of isotopic species (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). MS1 spectrum showing an isotopic envelope of a 2+ charged peptide. Four forms are detected. 790.89 m/z represents the peptide 
with no minor stable-isotopes. Peaks at 791.39, 791.89, 792.39, 792.89 correspond to the peptide containing one, two, three and four minor 
stable-isotopes, respectively. 
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 The advantages of SILAC using lysine and arginine as 
the labeled amino acids include the ease of complete (100%) 
labeling and complete coverage of each protein save for its  
C-terminal peptide. That trypsin, even after "complete" di-
gestion, predictably fails to cleave at some lysine and argin-
ine residues (e.g. post-translationally modifed lysine or a r-
ginine, specific sequence contexts) somewhat complicates 
analysis, but does not prevent quantitation. Stable-isotope 
labeled amino acids (e.g. Cambridge Isotopes) and several 
types of SILAC tissue culture media including DMEM, 
RPMI and IMEM (Thermo Scientific Pierce, Invitrogen) are 
commercially available. SILAC is limited to organisms that 
can be grown on de fined media. This is straightforward for 
cell lines, bacterial and yeast cells, but precludes most ani-

mal or hum an studies. Finally, SILAC is most straightfor-
ward when experiments consist of 2 s amples, a control 
(heavy) and treatment (light). However, recent studies have 
combined samples each labeled with different isotopic forms 
of the same amino acid, i.e. Arg, 13C6 Arg, 13C6-15N4 Arg, 
etc., to obtain comparative quantitation of three [34] to five 
conditions [35].  

STABLE-ISOTOPE LABELING USING CHEMICAL 
METHODS 

 Incorporation of stable isotopes into peptides or proteins 
via chemical reaction offers flexibility in sample types, in-
cluding tissues and bodily fluids. Common strategies include 

Table 1. An Overview of Methods for Stable-Isotope Labeling of Peptides and/or Proteins 

 SILAC Isobaric Tags ICAT 18O Labeling 

Type of labeling Metabolic  Chemical Chemical Enzymatic 

Time of labeling First step (cell growth) Middle step (peptide label-
ing) 

Middle step (protein 
labeling) 

Final step (peptide labeling) 

Sample type Sample that can grow in cell culture 
(Cell lines, yeast, bacteria) 

Any Any Any 

Post-label fractiona-
tion 

Peptide and protein separation Peptide separation Peptide and protein 
separation 

Only peptide separation 

Labeling target Proteins, selected amino acid N-terminal of peptides and 
lysine side chain 

Peptides containing 
cysteines 

C-terminus of all peptides 

Sample number Usually 2  (Up to 5) 4 or 8 2 2 

MS level MS1 MS2 (MS/MS) MS1 MS1 

Sample complexity Increased Same Increased Increased 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). An overview of stable-isotope labeling methods. The three types of labeling are: chemical (iTRAQ, ICAT), enzymatic (18O label-
ing with proteases, f.ex. trypsin) and metabolic (SILAC). Stars indicate presence of stable-isotope. Labeling can occur at the cellular level 
(metabolic labeling), at the protein level (chemical labeling) or at the peptide level (enzymatic and chemical labeling). Stable-isotope labeled 
peptides are identified and quantified in the final step, mass spectrometry analysis.  
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targeting the N- or C-terminal or any of the chemically reac-
tive amino acid side chains of peptides or proteins (Fig. 3, 
left panel). Chemical methods are not restricted in the size of 
the stable-isotope reagent and can be synthesized to include 
cleavable modules and/or affinity tags for isolation of a tar-
geted subset of the proteome. Recent methodologies include 
labeling with large isobaric (identical mass but distinct 
chemistry and/or isotopic distribution) tags that are cleaved 
during peptide fragmentation releasing marker ions. Com-
paring the intensity of these marker ions at the MS/MS level 
provides relative quantitation. Disadvantages of c hemical 
approaches include sample-to-sample inconsistency due to 
incomplete labeling on target sites and competing side reac-
tions that can modify secondary sites.  

Examples of Chemical Labeling Methods 

a) Isotope-Coded Affinity tag (ICAT) 

 One of the first commercialized stable-isotope tagging 
reagents is Isotope-coded affinity tag (ICAT, Applied Bio-
systems) [21, 36-39]. In ICAT, a pair of light and heavy rea-
gents target cysteines on peptides, adding a linker and a bio-
tin tag for a ffinity purification. The linker region of t he 
heavy reagent contains stable isotopes whereas the light rea-
gent contains no s table isotopes. Proteins from the samples 
to be examined are denatured and labeled with heavy or light 
reagents and then mixed and proteolyzed. The biotinylated 
peptides are purified using avidin affinity reagents, allowing 
for stringent washing that lowers background binding.  
 The main advantage of t his method is that it enriches 
peptides containing the relatively rare amino acid cysteine, 
thereby significantly reducing the complexity of the peptide 
mixture and increasing the dynamic range of mass spec-
trometry analysis. The downside is that only peptides and 
proteins containing cysteines are identified, giving low over-
all coverage. As a r esult quantitation becomes less accurate 
since few peptides are obtained from each protein. Finally, 
ICAT is limited to comparing two samples. 
 The ICAT approach has been widely used since its intro-
duction in 1999 [21, 36-39]. ICAT reagents have been com-
mercialized and are available from Applied Biosystems. 
Several global quantitation experiments have been per-
formed using the ICAT approach including the original pa-
per where protein expression in yeast Saccharomyces cere-
visiae was compared using either ethanol or ga lactose as a 
carbon source [21]. Other ICAT studies include 
identification of proteins regulated by the Myc oncoprotein 
[38] by comparing the protein expression patterns between 
myc-null and myc expressing cells and identification of pro-
teins regulated by interferon treatment in human liver cells 
[39]. 

b) Other Cysteine Labeling Methods 

 Several other methods have been developed for chemical 
labeling of cysteines including HysTag [40] and acrylamide 
labeling [41]. HysTag is a 10-mer derivatized peptide, which 
consists of a n affinity ligand (His6-tag), a tryptic cleavage 
site, a Ala-9 residue that contains either four (D4) or no (D0) 
deuterium atoms, and a thiol-reactive group t argeting cys-
teines. The HysTag peptide is preserved in Lys-C digestion 
of proteins and allows subsequent charge-based selection of 

cysteine-containing peptides. To remove the HysTag, subse-
quent tryptic digestion reduces the labeling group to a dipep-
tide, which does not hinder effective MS/MS fragmentation 
[40]. HysTag has many of the same advantaged and disad-
vantages of ICAT.  
 The second method involves alkylation of c ysteines of 
intact proteins with acrylamide [41]. While cysteine alkyla-
tion with acrylamide via Michael addition is an undesired 
reaction that frequently occurs during polyacrylamide gel 
electrophoresis [42], several features make it a useful tagging 
approach for quantitative analysis with stable isotopes. First, 
because of its small size and hydrophilic nature, the acryla-
mide moiety does not i ntroduce significant mass shift or 
charge changes in the protein and does not negatively affect 
protein solubility. Second, cysteine labeling is facile allow-
ing for complete labeling. Finally, the reagents are relatively 
inexpensive, making it practical to perform experiments 
starting with large amounts of protein as needed for exten-
sive fractionation and in-depth analysis [41]. The disadvan-
tages of acrylamide labeling are, as with other cysteine label-
ing reagents, that only cysteines are labeled and only pep-
tides containing cysteines can be quantified. However, as 
opposed to ICAT, the acrylamide method does not include a 
cysteine peptide enrichment step. Finally, the mass shift is 
small, 3 Da lton, resulting in some overlap between the iso-
tope envelopes of light and heavy peptides.  

c) Isobaric Tags 

 The chemical labeling technique iTRAQ (Isobaric tags 
for relative and absolute quantitation) developed by P appin 
[43] allows for quantitative comparison of up to 8 conditions 
without increasing sample "complexity". This method differs 
from the previous methods in that the quantitation is per-
formed at the MS/MS level. The iTRAQ reagent consists of 
a reporter group, a balance group and a reactive group that 
reacts with lysine side chains and N-terminal groups of pep-
tides. In the original 4-component version, the reporter group 
masses are 114, 115, 116 or 117 Da  and the balance group 
masses are 31, 30, 29 or 28 Da  to ensure that the combined 
mass remains constant at 145 Da. Briefly, a control and three 
treated samples are labeled individually with one of the 
iTRAQ reagents. The samples are then combined. Given that 
each isobaric tag has the same minor effect on the elution 
properties of the peptide, the four labeled versions of each 
peptide are indistinguishable in MS1 and are selected to 
fragment within a s ingle MS/MS scan. During collision-
induced fragmentation (CID), the reporter group ions (114, 
115, 116 and 117 Da) break away from the backbone pep-
tides, without preventing the fragmentation at peptide bonds 
needed for peptide identification. Relative quantitation for 
each of the treatment conditions being studied is obtained by 
comparing the intensities of the reporter group fra gments. 
Isobaric tags have been commercialized. 4- and 8-component 
iTRAQ kits (reporter groups of 113, 114, 115, 116, 117, 118, 
119 and 121 Da) are available from Applied Biosystems. 
Tandem Isobaric Mass Tag (TMT) kits with two or six com-
ponents that work by a  similar principle are available from 
Thermo Scientific.  
 The primary benefit of i sobaric tags over ICAT and re-
lated approaches is that labeling does not increase the com-
plexity of the mixture at the MS1 level, potentially resulting 
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in higher proteome coverage. Among downsides to isobaric 
tagging are that it is  limited to instruments that can provide 
good MS/MS spectra in the 100-120 Da range, such as the 
QSTAR Quadrupole Time-of-Flight instrument (ABI). Re-
cently, pulsed Q dissociation (PQD) has made it possible to 
detect the low mass isobaric tag reagent fragments on linear 
ion trap instruments including the LTQ-Orbitrap (Thermo) 
[44, 45].  
 As with other chemical labeling methods, complete label-
ing and removal of d erivatization byproducts is required. 
Global quantitation experiments have been performed using 
the iTRAQ approach including time resolved monitoring of 
kinase reactions [46], comparison of organelle proteomes [47 
and monitoring of protein expression changes as cancer cells 
acquire increasing metastatic potential [48]. Combining 
quantitation with phosphoproteomics, Aebersold et al. [49] 
recently described an iTRAQ method to simultaneously 
identify components and phosphorylation sites of prot ein 
complexes.   

STABLE-ISOTOPE LABELING USING ENZYMATIC 
METHODS 

Protease-Mediated 18O Exchange 

 A third method of stable isotope labeling involves enzy-
matic transfer of 18O from water to the carboxyl terminal of 
peptides by an oxygen exchange reaction [23, 50-53]. Sev-
eral enzymes are capable of this reaction including bovine 
trypsin, Lys-C or Arg-C , with trypsin being the most com-
monly used. Trypsin digestion is the most common method 
of sample preparation before mass spectrometry and there-
fore, incubation of peptides with trypsin in 18O enriched wa-
ter is a straightforward addition to the workflow. Because the 
labeling occurs at the last step, the experimental and control 
sample must be kept separate during lysis, any protein en-
richment and digestion.  

 Although 18O labeling is possible during digestion, the 
separate labeling exchange reaction after proteolysis is pref-
erable. Advantages include small volume labeling (decreas-
ing the volume of H2

18O required), ready use of immobilized 
trypsin to reduce back-exchange and separate optimization of 
digestion and labeling [23]. 
 Typically, tryptic 18O labeling is performed after a com-
plete digestion in 16O water. One sample is then subjected to 
trypsin exchange in regular water (16O sample) and the other 
in H2

18O water, resulting in the incorporation of two 18O at-
oms to the C-terminus of the peptide (18O sample) (Fig. 3, 
middle panel). The samples are then mixed and the 16O and 
18O forms of each peptide elute together from the HPLC as 
pairs of i ons, which are identical save for t heir carboxyl 
ends. Similar to SILAC and ICAT, the relative abundance of 
peptides can be inferred based on the relative intensity be-
tween the "light" 16O and "heavy" 18O ions in the MS1 spec-
tra. 
 The overall advantages of prot ease-mediated 18O ex-
change are that essentially any sample can be labeled, label-
ing introduces no chemical changes to the peptides, and the 
work flow is simple and inexpensive. The disadvantages 
include that only 2 samples can be labeled and that samples 
must be kept separate throughout the lysis, enrichment and 
proteolysis steps, potentially introducing errors due to differ-
ences in sample handling. Another disadvantage is that label-
ing is not as reproducible as some chemical methods, as the 
exchange reaction is highly sequence specific, and relies 
heavily on the purity of the H2

18O, the labeling time, buffer 
and temperature and the amount and activity of trypsin used.  

COMMON CONCERNS ABOUT LABELING 

 A critical component to stable-isotope labeling, using 
chemical, enzymatic or metabolic methods, is achieving 
complete labeling. It is worth the effort to spend time opti-
mizing and testing a labeled sample before starting an ex-

 

 

 

 

 

 

 

 

 
  
 

Fig. (3). MS1 spectra of unlabeled and stable-isotope labeled peptide. The sample was SILAC labeled with 13C6,15N2-Lysine. The differ-
ence between the two peptides is 4.01 dalton corresponding to a s ingle 13C6,15N2-Lysine (8.014 dalton) corrected for peptide charge (2 
charged peptide). 
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periment. Although calculations can be done to normalize 
samples to extent of l abeling, downstream analysis will be 
greatly simplified if labeling is complete. Unfortunately, 
even with optimization to achieve stoichiometric labeling of 
the majority of pe ptides, each of t he methods is subject to 
one or m ore artifacts, resulting in a subset of p eptides that 
display partial or unexpected labeling, thereby confounding 
analysis.  
 All of the above mentioned methods of labeling, except 
for isobaric tags, result in generation of peptide pairs at the 
MS1 level, where the light and heavy peptides are separated 
by a predictable number of mass units. If the mass difference 
is small, the natural isotope distribution of the light form will 
overlap with the monoisotopic peak of heavy form, frustrat-
ing quantitiation. Trypsin-mediated 18O exchange yields a 4 
Da mass difference that leads to challenging quantitation of 
higher charged peptides and peptides over 20 residues, par-
ticularly if the labeling is incomplete. Indeed, incorporation 
of a single 18O is common, leading to a mass difference of 
only 2 Da. In turn, even though acrylamide labeling is typi-
cally complete, it offers as little as a 3 Da mass shift. Al-
though it is possible to deconvolute such overlapping distri-
butions and quantify the heavy and light peaks, this is a 
complex and iterative process, requires high quality data, and 
is tedious. Thus, most commercial labeling reagents (SILAC, 
ICAT) are generated to have  4 D a mass difference and 
avoid this complication.  
 Finally, technical and biological replicates should be in-
cluded to identify problems with labeling, quantitation and 
analysis. Potential problems include differences in sample 
handling, cell growth, labeling procedure and/or quantita-
tion.  

SOFTWARE FOR QUANTITATIVE ANALYSIS OF 
STABLE-ISOTOPE LABELED SAMPLES  

 Although manual analysis is possible, automated identifi-
cation and quantitation of s table-isotope labeled peptides is 
far more practical but requires post-processing with special-
ized software. Software selection is based on t he type of 
mass spectrometer used to generate the data, which varies by 
mass spectrometer and detector technology (time-of-flight, 
ion trap, Orbitrap, ICR, etc.) and manufacturer (Thermo, 
Agilent, Waters, Bruker, Applied Biosystems). Some of the 
software can handle data from several types of propri etary 
input files and others can only handle a single type. For this 
reason, we will not go into specifics of each software tool 
but rather list of s ome of t he most popular software tools 
available. Currently available software are described in detail 
in recent reviews [54, 55]. 

Software for Quantitation at the MS1 Level  

 Mass spectrometry manufacturers often provide proprie-
tary software solutions for qua ntitation. Examples include 
Bioworks (Thermo-Finnigan), Peakpicker (Applied Biosys-
tems) and WARP-LC™ 1.1 (Bruker). Several open-source 
software tools are available including AYUMS developed by 
Miyano et al. [56], ProRata developed by Hettich et al. [57], 
and Mascot File Parsing and Quantification (MFPaQ) devel-
oped by Monsarrat et al. [58]. Compilations of software are 
available including Trans Proteomic Pipeline (TPP) devel-

oped at the Institute for S ystems Biology (ISB) in Seattle. 
Modules for qua ntitation include XPRESS [59] a nd AS-
APratio [60]. The ISB tools have been incorporated into 
Computational Proteomics Analysis System (CPAS), a suite 
of database and analysis tools, which manages proteomics-
based experimental workflows and integrates database 
search algorithms [61]. CPAS was originally developed in 
the Fred Hutchinson Cancer Research Center but is now dis-
tributed as part of the Labkey Server, an open-source project 
managed by the Labkey Software Foundation. Most recently, 
an open-source integrated suite of a lgorithms specifically 
developed for qu antitation of hi gh-resolution MS data, 
termed MaxQuant, was developed by Matthias Mann’s 
group [62]. Taking into account likely sources of e rror as 
described above, none of these software packages provides 
reliable quantitation without some manual validation.  

Software for Quantitation at the MS/MS Level 

 Quantitation software for isobaric tags includes commer-
cially available solutions such as ProteinPilot and ProQuant 
from Applied Biosystems, Spectrum Mill from Agilent, Pro-
teome Discoverer from Thermo Scientific and Scaffold Q+ 
from Proteome Software. Open-source software includes 
Libra, a software module used within the Trans Proteomic 
Pipeline (TPP).  

COMMON CONCERNS ABOUT QUANTITATION 
AND SUGGESTIONS TO IMPROVE QUALITY OF 
DATA 

 Despite the broad range of a vailable software, manual 
validation is often necessary to confirm each peptide quanti-
tation (and identification). Inaccurate or ambiguous results 
are almost certain where too few peptides can be quantified 
from a protein or whe re the standard deviation or p-va lue 
between multiple quantified peptides from a protein is not 
statistically significant. High-abundance proteins that yield 
ratios close to 1:1 have the highest confidence levels but 
provide little or no bi ological insight. As with any mass 
spectrometry experiment, low-abundance proteins are diffi-
cult to study because of the limited dynamic range. If pep-
tides are close to the detection limit of the mass spectrome-
ter, they can flicker in and out of the spectra making quanti-
tation uncertain. Some of t hese difficulties cannot be ad-
dressed without fractionating and/or normalizing the sample, 
which are subject to their own costs and artifacts. We rec-
ommend obtaining both biological and technical replicates 
and/or reversing the labeling to obtain higher confidence in 
protein ratios.  
 Finally, if the sample is too complex (too many peptides 
are in the sample), overlapping peptide spectra can occur and 
bring about errors in peptide quantitation both in MS1 and 
MS/MS. Performing peptide and/or protein separations using 
chromatography, electrophoresis or by i solating cellular 
compartments will help to reduce sample complexity. When 
designing experiments, it is important to decide what is the 
smallest subset of proteome that would suit your experiment. 
For example, to focus on proteins located in the mitochon-
dria, isolate and perform mass spectrometry on t he mito-
chondria only. The mass spectrometer and reverse phase 
columns have limited loading capacity. By loading the same 
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protein amount  but reducing the range of proteins present in 
the sample (from >20,000 in a complex whole-cell extract to 
~1400 in isolated mitochondria), it is possible to increase the 
signal for each protein and improve both the proteome cov-
erage and the confidence of peptide identification and quan-
titation.  

USING STABLE ISOTOPES TO ACHIEVE ABSO-
LUTE QUANTITATION 

 Stable isotopes can be incorporated into synthetic stan-
dards to obtain absolute quantitation. Isotope dilution and 
related approaches have been used in the small molecule 
field for decades [20]. A known amount of s table-isotope 
labeled analog of t he compound of i nterest (internal stan-
dard) is spiked into a sample containing the unlabeled com-
pound. The intensity of the unlabeled molecule is compared 
directly to the intensity of the stable-isotope labeled mole-
cule and the peak ratio calculated. For optimal performance, 
several concentrations of t he internal standard should be 
measured and a standard curve calculated. Some of the earli-
est peptide and protein based applications of m ass spec-
trometry for t racking and quantitation exploited enzymati-
cally labeled peptides generated via trypsin 18O-exchange 
[63], protein quantitation using peptides synthesized using 
13C, 2H-labeled amino acids [64] and 15N labeled peptide 
hormones [65]. Barnidge et al. [66] us ed a deuterium-
containing peptide from rhodopsin as an internal peptide 
standard for determining the absolute amount present in rod 
outer segments. Taken to its logical extreme, it would be 
feasible to spike a sample with one or m ore heavy-isotope 
labeled synthetic peptide reporters for e very protein in the 
predicted proteome, a strategy dubbed Absolute Quantitation 
(AQUA)[67]. This methodology can also be exploited to 
provide absolute quantitation of pos t-translational modifica-
tions. 

 As an alternative to protein quantitation from a single 
peptide standard, synthesizing or e xpressing stable-isotope 
labeled proteins can generate several peptide standards that 
can be used even in fractionated samples. In P rotein Stan-
dard Absolute Quantification, PSAQ, stable-isotope labeled 
proteins are synthesized in vitro and purified to homogeneity 
before adding to the proteomic sample [68, 69]. Mann et al. 
[70] performed “Absolute SILAC” with internal protein 
standards using recombinant proteins purified from stable-
isotope labeled E. coli. Additionally, a single synthesized 
concatemer protein comprised of peptides from 20 proteins 
of interest (QconCAT) has been generated to quantify a mix-
ture of proteins [71-74]. These isotope dilution strategies are 
reviewed in [75]. 

 Taken together, these studies show that the absolute 
quantitation of peptides and proteins using mass spectrome-
try is feasible. However, the sequence and identity of the 
peptide/protein of interest must be known so that the internal 
standard peptide/protein can be synthesized or is olated. 
Working sample complexity is limited by pra ctical consid-
erations including the labor expense of ge nerating 100's to 
1000's of i ndividual stable-isotope labeled peptides and/or 
proteins.  

HARNESSING THE INFORMATION OBTAINED 
FROM STABLE-ISOTOPE LABELING 

 For all methodologies except isobaric methods, the MS1 
spectra will contain peptide pairs consisting of an unlabeled 
and a labeled peptide, representing the peptides that can be 
quantified. Optimally, the mass spectrometer would recog-
nize these pairs and preferentially select the "light" monoiso-
topic ion for fragmentation, thereby avoiding background 
and/or contaminating ions and offsetting the added complex-
ity in the sample. This is particularly important for the analy-
sis of c omplex mass-tagged samples where the number of 
peptide pairs far exceeds the number of possible fragmenta-
tion scans. In principle, the existing user-defined, data-
dependent scanning software provided on commercial mass 
spectrometers can be adapted to direct the mass spectrometer 
to flag ions that are separated by a  pre-defined mass (mass 
tag) and subject only these to fragmentation. For example, 
such a s etting is called “mass tag” in Xcalibur software for 
Orbitraps and FT-ICR mass spectrometers (Thermo Finni-
gan). However, as of the writing of this review, "mass tag" 
remains to be fully implemented. 
 In addition to quantitation, stable-isotope labeling has 
been used to distinguish contaminants from bona fide inter-
actors in immunopurifications (I-DIRT) [76]. Tackett et al. 
grew yeast cells containing an affinity-tagged protein in light 
SILAC media and control yeast cells in heavy media. After 
mixing  the samples and isolating the affinity tagged protein 
complex, specific protein interactions were identified by 
mass spectrometry as a s ingle unlabeled peptide (light), but 
background contaminant proteins present in both the control 
(heavy) and affinity-tag protein expressing cells (light) were 
identified as peptide pairs. Another clever use of stable-
isotope quantitation is to examine dynamic protein-protein 
complexes and protein-DNA complexes [49, 77] by combin-
ing affinity purification approaches with stable-isotope tag-
ging. Quantification of c omponent stoichiometry of m ulti-
protein complexes has been performed using a peptide-
concatenated standard (PCS) strategy [78]. In this strategy, 
tryptic peptides suitable for quantification are selected from 
each component of the multiprotein complex and concate-
nated into a single synthetic protein, resulting in equimolar 
amounts of e ach "heavy" reference peptide. Other uses for 
stable-isotope labeling include measuring the rate of protein 
turnover [79] and identifying phosphorylation sites [49].  

USE OF STABLE ISOTOPES TO OBTAIN FASTER 
AND MORE ACCURATE PROTEIN IDENTIFICA-
TION  

 A complementary advantage of stable-isotope labeling is 
that when both heavy and light forms are subjected to frag-
mentation, mass shifts are observed in the MS/MS spectra 
that facilitate deconvolution and peptide sequence analysis. 
For the simplest case, where only the carboxyl terminus is 
labeled as in SILAC using lysine and arginine amino acids or 
18O labeling, comparing the two fragmentation patterns or 
selecting both forms to fragment together flags ions that de-
rive from the carboxyl terminus (y-type ions), as those dis-
playing characteristic mass shifts (e.g. 4 Da) (Fig. 4). Ac-
cordingly, comparison of s pectra of l abeled and unlabeled 
peptide fragments allows for assignment of peaks as shifting 
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or non-shifting, permitting assignment of pe aks to one ion 
series or the other and facilitating de novo peptide sequence 
analysis [80-84]. Peak assignment for va lidation of peptide 
identifications obtained by da tabase search has been auto-
mated in the Validator software suite [85], which recognizes 
isotopic peptide pairs from searched MS data and compares 
their identifications and fragmentation patterns. Because 
database search algorithms do not  utilize the embedded in-
formation from comparison of l abeled and unlabeled pep-
tides, Validator software provides a direct and independent 
means to validate peptide identifications from database 
search algorithms.  

CONCLUSIONS 

 Stable isotopes have become a versatile and useful tool in 
quantitative mass spectrometry. This review has described 
chemical, enzymatic and metabolic stable-isotope labeling 
techniques while highlighting the advantages and disadvan-
tages of each method. A wide variety of sample types can be 
labeled and analyzed including individual proteins and com-
plexes, biofluids, organelles, bacteria, yeast, mammalian 
cells and tissues. Absolute quantitation is straightforward for 
a single protein or a  protein complex, but remains cost- 
and/or labor-prohibitive for c omplex samples. Instead, a 
subproteome or a  complex cell extract are better suited to 
relative quantitation where one or more samples are com-
pared to a control sample and fold-change is calculated. In 
addition to quantitation, stable-isotope labeling can be used 
to identify components and measure the stoichiometry of 
protein-protein and protein-DNA complexes, to identify 
posttranslational modifications and background contamina-
tion and to aid in peptide identification and validation. 

 Modern mass spectrometers are capable of remarkable 
sensitivity, resolution, reproducibility and speed, so that iso-
topic experiments simple enough to be amenable to manual 
analysis can achieve precise quantitation of sub-femtomolar 
samples. However, many challenges remain that affect the 
quality of r esults for more interesting experiments on com-
plex samples, offering pitfalls for experienced and naive 
users alike. Sadly, no isotopic method is proof to the wide 
range of artifacts that arise due to biological variation, hu-
man error, primitive design and implementation of instru-
mentation control and poorly executed data analysis soft-
ware. Confounding the situation, proteomics experiments 
provide spurious answers side-by-side with highly reliable 
results, often with no clear distinction among them. 

 Nonetheless, some common principles apply that will 
enhance the quality of every experiment. A critical compo-
nent to stable-isotope labeling is achieving the most com-
plete and consistent labeling feasible as this greatly simpli-
fies downstream data analysis. Decreasing sample complex-
ity to improve peptide statistics for each protein allows high 
confidence in identification and ready discovery of quantita-
tion artifacts. Although software has come a long way in the 
last decade, manual validation to the level of visual inspec-
tion of mass spectrometry spectra remains a critical step. In 
summary, stable-isotope labeling for protein quantitation by 
mass spectrometry remains an emerging technology. Like 
many other proteomic methods, isotopic labeling is a power-

ful technique but care must be taken to use appropriate con-
trols, including biological and/or technical replicates, to 
identify potential problems with labeling, sample handling 
and/or data analysis. 
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ABBREVIATIONS 

AQUA = Absolute QUAntitation peptide strategy 
CPAS = Computational Proteomics Analysis System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Identification of b- and y-ions by comparing MS/MS 
spectra of unlabeled and stable isotope labeled peptides. The top 
panel shows the MS spectra of peptide A.  The middle panels show 
the MS/MS spectra of unlabeled peptide A and C-terminal stable 
isotope labeled peptide A. Comparing the fragmentation pattern of 
the two spectra reveal non-shifting ions (b-ions) and ions that shift 
by the mass of the stable isotopes (y-ions) and the bottom panel 
shows the identified b- and y-ions.   
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ESI = ElectroSpray Ionization 
ICAT = Isotope-Coded Affinity Tag  
ITRAQ = Isobaric Tags for Relative and Absolute Quan- 

titation 
MALDI = Matrix-Assisted Laser Desorption Ionization 
PSAQ = Protein Standard Absolute Quantification 
QconCAT = Q peptide CONCATamers 
SILAC = Stable-isotope Labeling with Amino acids in 

Cell culture 
TPP = Trans Proteomic Pipeline 
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